中文字幕一二三区,亚洲国产片在线观看,国产网站午夜性色,亚洲国产综合精品2022

<menuitem id="ct2o2"><var id="ct2o2"></var></menuitem>
      1. <noscript id="ct2o2"><progress id="ct2o2"><i id="ct2o2"></i></progress></noscript>
        1. 期刊 科普 SCI期刊 投稿技巧 學(xué)術(shù) 出書

          首頁 > 優(yōu)秀范文 > 半導(dǎo)體材料設(shè)計(jì)

          半導(dǎo)體材料設(shè)計(jì)樣例十一篇

          時(shí)間:2023-05-28 08:19:53

          序論:速發(fā)表網(wǎng)結(jié)合其深厚的文秘經(jīng)驗(yàn),特別為您篩選了11篇半導(dǎo)體材料設(shè)計(jì)范文。如果您需要更多原創(chuàng)資料,歡迎隨時(shí)與我們的客服老師聯(lián)系,希望您能從中汲取靈感和知識!

          半導(dǎo)體材料設(shè)計(jì)

          篇1

          中圖分類號:G642.0 文獻(xiàn)標(biāo)志碼:A 文章編號:1674-9324(2016)10-0085-02

          材料是人類文明的里程碑,其中半導(dǎo)體材料更是現(xiàn)代高科技的基礎(chǔ)材料。近年來,半導(dǎo)體材料在國民經(jīng)濟(jì)和前沿科學(xué)研究中扮演越來越重要的角色,引起了社會的廣泛關(guān)注。半導(dǎo)體材料作為材料科學(xué)與工程專業(yè)的核心專業(yè)課,主要是通過研究學(xué)習(xí)Si、Ge、砷化鎵等為代表的半導(dǎo)體材料的性質(zhì)、功能,內(nèi)容涉及晶體生長、化學(xué)提純、區(qū)熔提純等半導(dǎo)體材料的生長制備方法及半導(dǎo)體材料的結(jié)構(gòu)、缺陷和性能的分析和控制原理。隨著現(xiàn)代科技的飛速發(fā)展,該學(xué)科也更新?lián)Q代加快,形成了一些新的理論和概念。為了進(jìn)一步提高對半導(dǎo)體材料課程的教學(xué)質(zhì)量,我們借鑒國內(nèi)外大學(xué)先進(jìn)的教學(xué)理念,對該課程存在的問題進(jìn)行了總結(jié),并提出了新的教學(xué)改革。

          一、課程存在的問題

          在半導(dǎo)體材料課程的教學(xué)實(shí)踐過程中,存在諸多的問題,例如該課程教材包含的內(nèi)容非常寬泛,理論強(qiáng)且概念多而抽象;部分內(nèi)容與其他課程的重復(fù)性相對較高,使得學(xué)生缺乏學(xué)習(xí)興趣;更主要的是教材內(nèi)容大多注重理論,而忽視了實(shí)踐的重要性,缺少對前沿科學(xué)知識的相關(guān)介紹。此外,目前傳統(tǒng)的課堂教學(xué)方法主要是簡單的教師講述或者板書課件的展示形式,學(xué)生被動地接受知識,部分學(xué)生只能通過死記硬背的方式來記住教師所傳授的基礎(chǔ)理論知識,長此以往,只會加重學(xué)生對該課程的厭學(xué)情緒。此等只會與因材施教背道而馳,扼殺學(xué)生的個(gè)性和學(xué)習(xí)的自主性,不利于培養(yǎng)創(chuàng)造新型科學(xué)性專業(yè)型人才。

          二、課程改革的必要性

          《半導(dǎo)體材料》課程以介紹半導(dǎo)體材料領(lǐng)域的基礎(chǔ)理論為目的,從常見半導(dǎo)體的性質(zhì),揭示不同半導(dǎo)體材料性能和制備工藝之間的關(guān)系,全面闡述各半導(dǎo)體材料的共性基礎(chǔ)知識與其各自適應(yīng)用于的領(lǐng)域。在當(dāng)今信息時(shí)代科技的飛速發(fā)展中,只有結(jié)合理論和實(shí)踐才能發(fā)揮半導(dǎo)體的最大效用,才能更有效地掌握其深度和廣度,這些對后續(xù)課程的實(shí)施也有著一定的影響。作為材料科學(xué)與工程專業(yè)的重要專業(yè)課程之一,除了讓學(xué)生學(xué)習(xí)理論知識,更重要的是培養(yǎng)學(xué)生的科學(xué)實(shí)踐能力和職業(yè)技能,以適應(yīng)當(dāng)今社會的發(fā)展。針對以上存在的問題,半導(dǎo)體材料的教學(xué)改革迫在眉睫。由此才可以改變學(xué)生的學(xué)習(xí)現(xiàn)狀,調(diào)動和提高學(xué)生的學(xué)習(xí)興趣,提高教學(xué)質(zhì)量,使得我們所學(xué)知識真正為我們所用。

          三、教學(xué)內(nèi)容的改革

          1.內(nèi)容的改革。對傳統(tǒng)的半導(dǎo)體材料教學(xué)內(nèi)容的改革,從根本上來看最重要的是引入前沿知識,實(shí)現(xiàn)內(nèi)容的創(chuàng)新,并且使得理論聯(lián)系實(shí)際。下圖是目前我校的半導(dǎo)體材料的基本內(nèi)容,如下:

          目前我校的半導(dǎo)體材料課程內(nèi)容主要由以上幾個(gè)部分組成,其中A、B兩部分的內(nèi)容為重要部分,整個(gè)學(xué)期都在學(xué)習(xí);而C部分相對來說比較次要,在學(xué)習(xí)過程中大概講述一至兩種半導(dǎo)體材料,剩下的部分屬于自學(xué)部分,也不在考試范圍內(nèi);至于專業(yè)課的實(shí)驗(yàn),也相對較少且沒有代表性。該課程是在大三上學(xué)期開設(shè)的,對于處于這個(gè)階段的學(xué)生來說,面臨這考研或就業(yè)的選擇與準(zhǔn)備過程中。所以作為一門專業(yè)課,除了注重半導(dǎo)體材料的特性、制備和應(yīng)用方面的知識外,更重要的是半導(dǎo)體材料的應(yīng)用領(lǐng)域和研究現(xiàn)狀相結(jié)合,增加其實(shí)用性,不管對考研,還是就業(yè)的同學(xué)來說,都有一定的幫助。對于改革后的教學(xué)內(nèi)容,除了增加對圖1中C部分的重視度,其次,應(yīng)增加各模塊:目前半導(dǎo)體材料的熱點(diǎn)應(yīng)用領(lǐng)域及研究現(xiàn)狀。還有圖1中的A、B部分可適當(dāng)?shù)販p少,因?yàn)樵谄渌膶I(yè)課程都有學(xué)習(xí)過,對于重復(fù)的知識鞏固即可,沒必要再重點(diǎn)重復(fù)學(xué)習(xí)。對于實(shí)驗(yàn)課,相對于實(shí)驗(yàn)室來說,能夠操作的實(shí)驗(yàn)往往沒有多大的挑戰(zhàn)性,有條件的話能夠進(jìn)入相關(guān)企業(yè)觀摩,身臨其境的感受有意義得多。

          在實(shí)際的課程教學(xué)過程中,除了學(xué)習(xí)常見半導(dǎo)體材料的發(fā)展歷史和研究方法外,介紹一些新型的半導(dǎo)體材料及其應(yīng)用領(lǐng)域,例如半導(dǎo)體納米材料、光電材料、熱電材料、石墨烯、太陽能電池材料等,使學(xué)生能夠區(qū)分不同半導(dǎo)體各自的優(yōu)缺點(diǎn);除了介紹晶體生長、晶體缺陷類型的判定及控制的理論知識外,介紹幾種生產(chǎn)和科研中常見的材料檢測方法,如X射線衍射、掃描電子顯微鏡、紅外光譜儀、熒光光譜等。此外,還可以介紹當(dāng)前國內(nèi)外的半導(dǎo)體行業(yè)的現(xiàn)狀和科技前沿知識,讓學(xué)生清楚半導(dǎo)體行業(yè)存在的一些問題需要他們?nèi)ネ瓿?,以激發(fā)學(xué)生的使命感和責(zé)任感。在講授各種外延生長的設(shè)備和原理時(shí),應(yīng)介紹一些相關(guān)的科學(xué)研究工作,如真空鍍膜、磁控濺射等。另外,可以以專題的形式,介紹一些前沿內(nèi)容,如半導(dǎo)體納米材料、石墨烯方面的研究進(jìn)展和應(yīng)用前景等,拓寬學(xué)生的知識面,以激發(fā)學(xué)生的研究興趣和培養(yǎng)創(chuàng)新意識。

          2.教材參考書的選擇。《半導(dǎo)體材料》課程內(nèi)容較多,不同的教材的側(cè)重點(diǎn)不一樣,所以僅僅學(xué)習(xí)教材上的內(nèi)容往往不夠,所以根據(jù)課程的改革要求和《半導(dǎo)體材料》課程自身的特點(diǎn),需要與本課程密切相關(guān)的、配套齊全的參考教程,例如半導(dǎo)體器件物理(第二版)、微電子器件與IC設(shè)計(jì)基礎(chǔ)(第二版)、半導(dǎo)體器件原理等。

          四、教學(xué)方法的改革

          由于傳統(tǒng)的教學(xué)觀念的影響,半導(dǎo)體材料課程的仍是以板書課件為主的傳統(tǒng)的教學(xué)方法。這種單一枯燥的教學(xué)方式忽視了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)的主觀能動性,極大地阻礙了對學(xué)生創(chuàng)新能力的培養(yǎng)。此外,該課程的考核方式單一,以期末考試為主,一定程度使學(xué)生養(yǎng)成了為考試而學(xué)的心態(tài),對所學(xué)知識死記硬背,沒有做到真正的融會貫通、學(xué)以致用的目的。大部分學(xué)生以修學(xué)分為目的,期末考試后對所學(xué)知識所知無幾,學(xué)一門丟一門的心態(tài),嚴(yán)重影響了教學(xué)效果,更重要的對學(xué)生今后的研究和工作沒有任何的幫助??梢?,對這種灌輸知識的教學(xué)方式和考核機(jī)制的改革迫在眉睫。在教學(xué)過程中采用小組式討論,網(wǎng)絡(luò)教學(xué)平臺,專題式講解,實(shí)驗(yàn)教學(xué)等多種教學(xué)方式,將有益于改善教學(xué)效果。

          1.小組討論式教學(xué)。為了充分發(fā)揚(yáng)學(xué)生的個(gè)性特點(diǎn)和體現(xiàn)教學(xué)的人性化,使得學(xué)生真正成為主體,必須提供新穎、易于討論的課程環(huán)境,從而培養(yǎng)學(xué)生自主創(chuàng)新的意識和能力。小組討論式教學(xué)模式就很好地體現(xiàn)了這一點(diǎn),在小組討論中,可以使學(xué)生發(fā)表自己所思所想,相互學(xué)習(xí),集思廣益,取長補(bǔ)短。教師在教學(xué)過程中應(yīng)鼓勵(lì)學(xué)生質(zhì)疑的精神,使其敢于突破傳統(tǒng),思維獨(dú)到,鼓勵(lì)學(xué)生在錯(cuò)誤中積累寶貴經(jīng)驗(yàn);給予學(xué)生正能量,引起學(xué)生的學(xué)習(xí)熱情和興趣,營造輕松、積極的課堂環(huán)境。

          2.網(wǎng)絡(luò)教學(xué)平臺。在多媒體盛行的時(shí)代,開放式、多媒體式教學(xué)方式備受關(guān)注,即建設(shè)一個(gè)融入教師教和學(xué)生學(xué)為一體的、便于師生互動的網(wǎng)絡(luò)教學(xué)平臺。在網(wǎng)絡(luò)教學(xué)平臺上可以提供各種學(xué)習(xí)輔助資料和學(xué)習(xí)支持服務(wù)。例如一對一的視頻輔導(dǎo)、課堂直播、網(wǎng)上答疑、學(xué)習(xí)論壇、名師講解等形式。學(xué)生可根據(jù)自身的學(xué)習(xí)愛好和學(xué)習(xí)習(xí)慣自主選擇學(xué)習(xí)時(shí)間。通過這種便利的人機(jī)交互學(xué)習(xí),為學(xué)習(xí)者提供了一個(gè)針對性強(qiáng)、輔助有利、溝通及時(shí)、互動充分、獨(dú)立自主的學(xué)習(xí)環(huán)境,同時(shí)提供了豐富的學(xué)習(xí)資源。

          3.專題式講解。半導(dǎo)體材料課程包含的內(nèi)容很廣泛,有許多的分支;由于教學(xué)內(nèi)容的增多,往往會給學(xué)生造成錯(cuò)亂,理不清思緒。專題式講解是更系統(tǒng)的學(xué)習(xí),使學(xué)習(xí)過程有條不紊。專題式講解既可以由教師主講,也可以由學(xué)生自己學(xué)習(xí)整理,再以PPT的形式將所學(xué)所思講給同學(xué)聽。既鍛煉了學(xué)生的自學(xué)能力,又鍛煉了學(xué)生的口語和實(shí)踐能力。

          4.實(shí)驗(yàn)教學(xué)。實(shí)驗(yàn)是一種提高學(xué)生感性認(rèn)識的有效手段,實(shí)驗(yàn)教學(xué)將有助于學(xué)生深入理解所學(xué)理論知識,并在實(shí)驗(yàn)中應(yīng)用相關(guān)理論,為學(xué)生獲得新的理論知識打下良好的基礎(chǔ)。例如,可以通過實(shí)踐教學(xué)方法來傳授半導(dǎo)體材料的生長制備、結(jié)構(gòu)表征、性能測試以及應(yīng)用等方面的知識。合理安排實(shí)驗(yàn),通過在實(shí)驗(yàn)設(shè)計(jì)過程中制定實(shí)驗(yàn)方案、實(shí)驗(yàn)操作、實(shí)驗(yàn)報(bào)告或論文撰寫等環(huán)節(jié),不僅提高了學(xué)生的動手能力,對學(xué)生創(chuàng)新能力的培養(yǎng)也起到極大的促進(jìn)作用。對實(shí)驗(yàn)過程中出現(xiàn)的實(shí)驗(yàn)偏差、操作失誤、環(huán)境改變等對實(shí)驗(yàn)結(jié)果的影響分析,為將來的科研工作打下堅(jiān)實(shí)的基礎(chǔ)。此外,建立校企合作新機(jī)制,依托企業(yè)、行業(yè)、地方政府在當(dāng)?shù)亟⒍鄠€(gè)學(xué)生教學(xué)實(shí)習(xí)基地,為加強(qiáng)實(shí)踐教學(xué)提供有力支撐,讓學(xué)生有實(shí)地模擬學(xué)習(xí)的機(jī)會,提高教學(xué)效果,增強(qiáng)學(xué)習(xí)興趣。

          五、結(jié)論

          《半導(dǎo)體材料》課程是材料科學(xué)與工程專業(yè)的重要專業(yè)課程。半導(dǎo)體材料課程的教學(xué)改革,對提高材料專業(yè)的人才培養(yǎng)質(zhì)量具有一定的意義。依據(jù)科學(xué)技術(shù)的發(fā)展,及時(shí)更新教學(xué)內(nèi)容改革教學(xué)方法,因材施教。同時(shí)在教學(xué)實(shí)踐中,我們將半導(dǎo)體材料的新理論、新應(yīng)用和一些科學(xué)研究成果引入到教學(xué)內(nèi)容當(dāng)中,處理好基礎(chǔ)性和創(chuàng)新性、先進(jìn)性、經(jīng)典和現(xiàn)代的關(guān)系,加強(qiáng)理論聯(lián)系實(shí)際的教學(xué)環(huán)節(jié)建設(shè),有利于提高教學(xué)質(zhì)量,加強(qiáng)學(xué)生的學(xué)習(xí)效果,培養(yǎng)出具有扎實(shí)理論基礎(chǔ)、較強(qiáng)的實(shí)踐能力的應(yīng)用技術(shù)型人才和一定科研能力的研究型人才。

          篇2

          Ⅱ-Ⅲ2-Ⅳ4型三元化合物,為具有缺陷黃銅礦結(jié)構(gòu)的寬帶半導(dǎo)體材料,材料電子機(jī)構(gòu)優(yōu)化性強(qiáng),彈性以及光學(xué)性質(zhì)好,用于光學(xué)設(shè)備乃至電光器件等的制造中,在提高設(shè)備性能方面,價(jià)值顯著。本文以密度泛函理論為基礎(chǔ),對缺陷黃銅礦結(jié)構(gòu)半導(dǎo)體CdAl2S4的電子機(jī)構(gòu)、彈性及光學(xué)性質(zhì)進(jìn)行了分析:

          1 寬帶半導(dǎo)體材料模擬計(jì)算方法

          以密度泛函理論為基礎(chǔ)進(jìn)行模擬計(jì)算。將CdAl2S4拆分開來,分為Cd、Al以及S三個(gè)部分,三者的價(jià)電子組態(tài)存在一定差異,Cd電子組態(tài)為4d105s2、Al電子組態(tài)為3s23p2、S電子組態(tài)為3s23p4。電子與電子之間存在的交換關(guān)聯(lián)勢,以PBE泛函作為基礎(chǔ)進(jìn)行描述。參數(shù)設(shè)計(jì)情況如表1。

          從表1中可以看出,半導(dǎo)體材料參數(shù)如下:

          (1)動能截?cái)嘀担?00eV。

          (2)布里淵區(qū)k點(diǎn)網(wǎng)格8×8×4。

          (3)原子作用收斂標(biāo)準(zhǔn):10-3eV/A。

          (4)自洽精度:10-6eV/atom。

          2 寬帶半導(dǎo)體材料的電子機(jī)構(gòu)與性質(zhì)

          2.1 寬帶半導(dǎo)體材料的電子機(jī)構(gòu)

          從晶格結(jié)構(gòu)、能帶結(jié)構(gòu)方面,對寬帶半體材料CdAl2S4的電子機(jī)構(gòu)進(jìn)行了研究:

          2.1.1 晶格結(jié)構(gòu)

          寬帶半導(dǎo)體材料CdAl2S4的原子中,不同原子的空間占位不同,具體如表2。

          考慮不同原子在空間占位方面存在的差異,應(yīng)首先采用晶格優(yōu)化的方法,提高材料結(jié)構(gòu)本身的穩(wěn)定性,CdAl2S4的晶格結(jié)構(gòu)參數(shù)以及鍵長如下:Cd-S鍵長2.577、Al1-S鍵長2.279、Al2-S鍵長2.272。a實(shí)驗(yàn)值2.553,計(jì)算值5.648。

          2.1.2 能帶結(jié)構(gòu)

          寬帶半導(dǎo)體材料CdAl2S4的能帶結(jié)構(gòu)如圖1。

          圖1顯示,寬帶半導(dǎo)體材料CdAl2S4的價(jià)帶主要由三部分所構(gòu)成,分別為低價(jià)帶、高價(jià)帶與最高價(jià)帶:

          (1)低價(jià)帶:低價(jià)帶即能量最低的價(jià)帶,包括S的s態(tài)以及Al的s態(tài)等部分,通過對半導(dǎo)體材料CdAl2S4的低價(jià)帶的觀察可以發(fā)現(xiàn),S與Al兩者中所包含的原則,具有較高的結(jié)合性質(zhì)。

          (2)高價(jià)帶:與低價(jià)帶相比,高價(jià)帶的能量相對較高,判斷與Cd原子有關(guān)。觀察圖1可以看出,半導(dǎo)體材料CdAl2S4高價(jià)帶Cd-d態(tài)的局域性較強(qiáng)。

          (3)最高價(jià)帶:最高價(jià)帶的能量最高,一般在-5.4-0eV之間,該價(jià)帶包括上下兩部分,兩部分所包含的能態(tài)各不相同。以導(dǎo)帶部分為例,其能態(tài)一般在3.395eV-6.5eV之間。

          2.2 寬帶半導(dǎo)體材料的性質(zhì)

          從彈性性質(zhì)、光學(xué)性質(zhì)兩方面,對寬帶半導(dǎo)體材料CdAl2S4的性質(zhì)進(jìn)行了分析:

          2.2.1 彈性性質(zhì)

          晶體相鄰原子的成鍵性質(zhì)等,與彈性性質(zhì)存在聯(lián)系。從寬帶半導(dǎo)體材料CdAl2S4的各向異性因子,該材料的彈性性質(zhì)呈現(xiàn)各向異性的特點(diǎn)。

          寬帶半導(dǎo)體材料CdAl2S4的延展性與脆性,與彈性同樣存在聯(lián)系,簡單的講,材料的延展性與彈性呈正相關(guān),材料脆性與彈性,則呈負(fù)相關(guān)。通常情況下,材料的延展性與脆性如何,可以采用體模量與剪切模量之間的比值來確定,當(dāng)兩者之間的比值在1.75以下時(shí),說明材料的延展性較差,脆性較強(qiáng),彈性性質(zhì)較差。相反,當(dāng)兩者之間的比值在1.75以上時(shí),則說明材料的延展性較強(qiáng),脆性較弱,彈性性質(zhì)較強(qiáng)。

          通過對寬帶半導(dǎo)體材料CdAl2S4體模量與剪切模量之間的比值的計(jì)算可以發(fā)現(xiàn),比值為1.876,較1.75大,可以認(rèn)為,該材料的延展性較強(qiáng),脆性較弱,彈性性質(zhì)較強(qiáng)。

          2.2.2 光學(xué)性質(zhì)

          半導(dǎo)體材料的光學(xué)性質(zhì),屬于其物理性質(zhì)中極其重要的一方面,在光學(xué)儀器等的研制過程中,對半導(dǎo)體材料的光學(xué)性質(zhì)十分重視。寬帶半導(dǎo)體材料CdAl2S4的本質(zhì)來看,該材料晶體為四方晶系單光軸晶體,各向異性顯著。

          將光譜能量確定為0-20eV,對材料的光學(xué)性質(zhì)進(jìn)行了研究,發(fā)現(xiàn)半導(dǎo)體材料CdAl2S4的光子能量在3.5eV以下以及12.5eV以上的區(qū)域,而不存在在兩者之間,可以認(rèn)為,該材料晶體的光學(xué)性質(zhì)具有各向異性。另外,研究顯示,該材料的反射系數(shù)可達(dá)到0.85,強(qiáng)放射峰在紫外區(qū)域,可以認(rèn)為,寬帶半導(dǎo)體材料CdAl2S4具有紫外探測以及紫外屏蔽的光學(xué)性質(zhì)。

          3 討論

          寬帶半導(dǎo)體材料CdAl2S4電子機(jī)構(gòu)相對穩(wěn)定,延展性較強(qiáng),脆性較弱,彈性性質(zhì)較強(qiáng),具有紫外探測以及紫外屏蔽的光學(xué)性質(zhì)。未來,應(yīng)對寬帶半導(dǎo)體材料的性質(zhì)進(jìn)行進(jìn)一步的研究,以開發(fā)出該材料的更多功能,確保其價(jià)值能夠得到更好的發(fā)揮。

          4 結(jié)論

          鑒于寬帶半導(dǎo)體材料CdAl2S4在電子機(jī)構(gòu)以及彈性性質(zhì)和光學(xué)性質(zhì)方面存在的特點(diǎn)及優(yōu)勢,可以將其應(yīng)用到紫外探測以及紫外屏蔽等材料的研制過程中,使之優(yōu)勢能夠得到充分的發(fā)揮,為社會各領(lǐng)域的發(fā)展發(fā)揮價(jià)值。

          參考文獻(xiàn)

          [1]張麗麗,馬淑紅,焦照勇.寬帶隙半導(dǎo)體CdAl_2S_4電子結(jié)構(gòu)、彈性和光學(xué)性質(zhì)的研究[J].原子與分子物理學(xué)報(bào),2016(02):357-361.

          [2]陳芳,魏志鵬,劉國軍,唐吉龍,房丹,方鉉,高嫻,趙海峰,王雙鵬.掃描近場光學(xué)顯微技術(shù)在半導(dǎo)體材料表征領(lǐng)域應(yīng)用的研究進(jìn)展[J].材料導(dǎo)報(bào),2014(23):28-33.

          篇3

          1.國內(nèi)外研究概況

          就我國而言,對于半導(dǎo)體制冷技術(shù)的研究最早開始于上世紀(jì)50年代末60年代初,愛60年代中期,我國的半導(dǎo)體材料研究取得了一定程度的進(jìn)步,所研究的半導(dǎo)體材料的性能已經(jīng)能夠與國際水平相符合。然后,從上世紀(jì)60年代末期開始到80年代初期,這段時(shí)間是我國半導(dǎo)體制冷片技術(shù)發(fā)展的關(guān)鍵時(shí)期,在這這一時(shí)期之內(nèi),我國的半導(dǎo)體制冷技術(shù)研究取得了關(guān)鍵性的突破,主要表現(xiàn)在兩個(gè)方面:一方面,半導(dǎo)體制冷材料的優(yōu)值系數(shù)得到了一定程度上的提高;另一方面,就半導(dǎo)體制冷技術(shù)的應(yīng)用方面而言,其應(yīng)用層次更深,應(yīng)用范圍也更為廣泛。

          2.工作原理分析

          在半導(dǎo)體制冷技術(shù)當(dāng)中,有一個(gè)核心材料,即半導(dǎo)體制冷片,它又被稱作為熱點(diǎn)制冷片。其優(yōu)點(diǎn)主要表現(xiàn)為半導(dǎo)體制冷片之中不含有滑動部件,且無制冷劑污染的場合。但是也存在著一定程度上的缺陷,主要表現(xiàn)為應(yīng)用在一些空間會受到相應(yīng)的限制。一般情況下,半導(dǎo)體制冷片的工作運(yùn)轉(zhuǎn)主要是通過直流電流為其進(jìn)行供電,因此,它可以達(dá)到制冷以及加熱的雙重效果,而這一效果的主要是通過對直流電流的極性進(jìn)行一定程度上的改變來進(jìn)行有效實(shí)現(xiàn)的。對于一個(gè)單片制冷片而言,它主要是由兩片陶瓷片組成,在陶瓷片的中間存在著相應(yīng)的N型與P型的半導(dǎo)體材料。半導(dǎo)體制冷片之所以能夠有效的運(yùn)行,主要是通過以下的原理實(shí)現(xiàn)的:將一塊N型半導(dǎo)體材料與一塊P型半導(dǎo)體材料進(jìn)行一定程度上的聯(lián)結(jié),這樣一來,就形成了電偶對,當(dāng)有直流電在這一電路中進(jìn)行流通時(shí),就會發(fā)生一定程度上的能量轉(zhuǎn)移,電流從N型半導(dǎo)體材料流入到P型半導(dǎo)體材料的接頭,并對熱量進(jìn)行一定程度的吸收,成為冷端;而當(dāng)電流從P型半導(dǎo)體材料流入到N型半導(dǎo)體材料的接頭并釋放能量,就形成了熱端。

          3.原理方案設(shè)計(jì)及工藝流程

          半導(dǎo)體制冷不需要制冷劑,所以不需要考慮破話壞臭氧層問題;由于沒有運(yùn)動構(gòu)件,噪音非常小而且體積也很小。由于這兩方面的突出優(yōu)點(diǎn),我們這里利用了半導(dǎo)體芯片,熱交換器、隔熱箱、風(fēng)扇安裝了小型恒溫箱。

          ①芯片安裝:芯片安裝對一塊半導(dǎo)體芯片進(jìn)行一定程度上的使用;為了對冷熱端斷路進(jìn)行有效的防止,在芯片的通過運(yùn)用隔熱板來達(dá)到隔熱效果;散熱板的安裝。

          ②電路接線:芯片接線與風(fēng)機(jī)采用并聯(lián)形式,由電源直接進(jìn)行一定程度的供電。除此之外,對無級調(diào)節(jié)電壓進(jìn)行了有效運(yùn)用,這樣一來,就可以根據(jù)溫度的變化來對電壓的高低進(jìn)行一定程度的調(diào)節(jié)。

          ③外殼安裝:外殼主要使用泡沫封裝,只留封口和引線位置。尺寸是200mmX150mmX150mm3、用保溫棉保溫,同時(shí)在機(jī)箱外殼之上對散熱裝置進(jìn)行了有效的設(shè)置。

          4.半導(dǎo)體制冷系統(tǒng)的功能及特點(diǎn)分析

          將半導(dǎo)體制冷技術(shù)應(yīng)用于小型恒溫箱之中,形成了一種新型的空調(diào)系統(tǒng),較之于傳統(tǒng)的功能系統(tǒng),這種新型空調(diào)系統(tǒng)表現(xiàn)出較大的優(yōu)越性,其特點(diǎn)主要表現(xiàn)在如下幾個(gè)方面:

          (1)在這一制冷系統(tǒng)當(dāng)中,不再需要任何制冷劑,且當(dāng)系統(tǒng)處于運(yùn)行狀態(tài)之中,具有較強(qiáng)的連續(xù)性。同時(shí),正是不需要任何制冷劑,使得這一系統(tǒng)沒有污染源、沒有相應(yīng)的旋轉(zhuǎn)部件,這樣一來,就不會產(chǎn)生回轉(zhuǎn)效應(yīng),進(jìn)而對減震抗噪的效果起到一定的促進(jìn)作用。除此之外,這種制冷系統(tǒng)使用壽命較長,且安裝過程簡單方便。

          (2)這一新型制冷系統(tǒng)中有效運(yùn)用了半導(dǎo)體制冷片,因此能夠?qū)χ评渑c加熱兩種效果進(jìn)行有效的實(shí)現(xiàn)。根據(jù)相關(guān)實(shí)踐表明,這一系統(tǒng)的制冷效率一般不高,但在制熱方面,系統(tǒng)發(fā)揮出十分高的效率,永遠(yuǎn)大于1.因此,只需要對一個(gè)片件進(jìn)行有效的使用,就能夠?qū)Ψ至⒌募訜嵯到y(tǒng)以及制冷系統(tǒng)進(jìn)行一定程度上的替代。

          (3)半導(dǎo)體制冷片是電流換能型片件,通過對輸入電流進(jìn)行一定程度上的控制,就可以對溫度進(jìn)行有效的控制,且這種控制能夠達(dá)到高精度的要求。除此之外,再加之溫度的檢測與控制手段,就能夠進(jìn)一步對遙控、程控以及計(jì)算機(jī)控制進(jìn)行有效的實(shí)現(xiàn)。這樣一來,這一系統(tǒng)的自動化程度也得到了較大程度上的提升。

          (4)對于半導(dǎo)體制冷片而言,它具有相對較小的熱慣性,因此制冷系統(tǒng)的制冷、制熱時(shí)間相對較快,在熱端散熱良好冷端空載的情況下,通電不到一分鐘,制冷片就能達(dá)到最大溫差。

          (5)一般情況下,對于單個(gè)制冷元件而言,它難以發(fā)揮出很大的功率,但如果將之進(jìn)行一定程度上的組合,使其成為一個(gè)電堆,用同類型的電堆串、并聯(lián)的方法組合成制冷系統(tǒng)的話,就可以對其系統(tǒng)進(jìn)行有效的擴(kuò)大。正是因?yàn)檫@一原因,制冷系統(tǒng)的功率的范圍非常大,既能是幾毫瓦,也能是上萬瓦。

          5.結(jié)束語

          本文主要針對半導(dǎo)體制冷技術(shù)在小型恒溫箱的應(yīng)用進(jìn)行研究與分析。首先對國內(nèi)外的研究狀況進(jìn)行了一定程度上的介紹,然后在此基礎(chǔ)之上闡述了制冷系統(tǒng)的工作原理。最后重點(diǎn)分析了半導(dǎo)體制冷系統(tǒng)的功能及特點(diǎn)。希望我們的研究能夠給讀者提供參考并帶來幫助。

          參考文獻(xiàn):

          [1] 王軍,唐新峰,張清杰. p型Bi2Te3CoSb3系結(jié)構(gòu)梯度熱電材料性能研究[J]. 武漢理工大學(xué)學(xué)報(bào). 2004(10)

          篇4

          二、專業(yè)培養(yǎng)方案的改革與實(shí)施

          (一)應(yīng)用物理學(xué)專業(yè)培養(yǎng)方案改革過程

          我校從2004年開始招收應(yīng)用物理學(xué)專業(yè)學(xué)生,當(dāng)時(shí)只是粗略地分為光電子方向和傳感器方向,而課程的設(shè)置大都和一般高校應(yīng)用物理學(xué)專業(yè)的設(shè)置一樣,只是增設(shè)了一些光電子、傳感器以及控制方面的課程,完全沒有自己的特色。隨著對學(xué)科的深入研究,周邊高校的互訪調(diào)研以及自貢和樂山相繼成為國家級新材料基地,我們逐步意識到半導(dǎo)體材料及光伏技術(shù)應(yīng)該是一個(gè)應(yīng)用物理學(xué)專業(yè)的可持續(xù)發(fā)展的方向。結(jié)合我校的實(shí)際情況,我們從2008年開始修訂專業(yè)培養(yǎng)方案,用半導(dǎo)體材料及光伏技術(shù)方向取代傳感器方向,成為應(yīng)用物理學(xué)專業(yè)方向之一。在此基礎(chǔ)上不斷修改,逐步形成了我?,F(xiàn)有的應(yīng)用物理專業(yè)的培養(yǎng)方案。我們的培養(yǎng)目標(biāo):學(xué)生具有較扎實(shí)的物理學(xué)基礎(chǔ)和相關(guān)應(yīng)用領(lǐng)域的專業(yè)知識;并得到相關(guān)領(lǐng)域應(yīng)用研究和技術(shù)開發(fā)的初步訓(xùn)練;具備較強(qiáng)的知識更新能力和較廣泛的科學(xué)技術(shù)適應(yīng)能力,使其成為具有能在應(yīng)用物理學(xué)科、交叉學(xué)科以及相關(guān)科學(xué)技術(shù)領(lǐng)域從事應(yīng)用研究、教學(xué)、新技術(shù)開發(fā)及管理工作的能力,具有時(shí)代精神及實(shí)踐能力、創(chuàng)新意識和適應(yīng)能力的高素質(zhì)復(fù)合型應(yīng)用人才。為了實(shí)現(xiàn)這一培養(yǎng)目標(biāo),我們在通識教育平臺、學(xué)科基礎(chǔ)教育平臺、專業(yè)教育平臺都分別設(shè)有這方面的課程,另外還在實(shí)踐教育平臺也逐步安排這方面的課程。

          (二)專業(yè)培養(yǎng)方案的實(shí)施

          為了實(shí)施新的培養(yǎng)方案,我們從幾個(gè)方面來入手。首先,在師資隊(duì)伍建設(shè)上。一方面,我們引入學(xué)過材料或凝聚態(tài)物理的博士,他們在半導(dǎo)體材料及光伏技術(shù)方面都有自己獨(dú)到的見解;另一方面,從已有的教師隊(duì)伍中選出部分教師去高校或相關(guān)的工廠、公司進(jìn)行短期的進(jìn)修培訓(xùn),使大家對半導(dǎo)體材料及光伏技術(shù)有較深的認(rèn)識,為這方面的教學(xué)打下基礎(chǔ)。其次,在教學(xué)改革方面。一方面,在課程設(shè)置上,我們準(zhǔn)備把物理類的課程進(jìn)行重新整合,將關(guān)系緊密的課程合成一門。另一方面,我們將應(yīng)用物理學(xué)專業(yè)的兩個(gè)方向有機(jī)地結(jié)合起來,在光電子技術(shù)方向的專業(yè)課程設(shè)置中,我們有意識地開設(shè)了一些課程,讓半導(dǎo)體材料及光伏技術(shù)方向的學(xué)生能夠去選修這些課程,讓他們能夠?qū)夥a(chǎn)業(yè)的生產(chǎn)、檢測、裝備有更全面的認(rèn)識。最后,在實(shí)踐方面。依據(jù)學(xué)校資源共享的原則,在材料與化學(xué)工程學(xué)院開設(shè)材料科學(xué)實(shí)驗(yàn)和材料專業(yè)實(shí)驗(yàn)課程,使學(xué)生對材料的生產(chǎn)、檢測手段有比較全面的認(rèn)識,并開設(shè)材料科學(xué)課程設(shè)計(jì),讓學(xué)生能夠把理論知識與實(shí)踐聯(lián)系起來,為以后在工作崗位上更好地工作打下堅(jiān)實(shí)的基礎(chǔ)。

          篇5

          進(jìn)入新世紀(jì)以后,節(jié)能環(huán)保的概念開始在全世界范圍內(nèi)普及,作為低碳環(huán)保的一項(xiàng)有效途徑,低碳經(jīng)濟(jì)的發(fā)展可以有效地促進(jìn)整個(gè)社會的節(jié)能環(huán)?;顒?。低碳經(jīng)濟(jì)指的就是依托于低能耗、低污染、低排放的“三低要求”來作為核心的節(jié)能環(huán)保經(jīng)濟(jì)模式,這是人類文明的又一偉大壯舉。目前,我國在“可持續(xù)發(fā)展”的理念的指導(dǎo)下,在社會中大力采用“低碳經(jīng)濟(jì)”的生產(chǎn)模式,成功的實(shí)現(xiàn)了經(jīng)濟(jì)效益和環(huán)保效益的雙豐收。眾所周知,二十一世紀(jì)是電子信息的時(shí)代,人類社會對電子信息材料的需求量也是與日俱增,如何有效的實(shí)現(xiàn)電子信息材料的低碳經(jīng)濟(jì),已經(jīng)成為了電子信息行業(yè)發(fā)展的一項(xiàng)重大課題。

          一、簡要介紹各種可以用于低碳經(jīng)濟(jì)發(fā)展模式的電子信息材料

          目前,在世界的電子信息行業(yè)里面,可以用來作為電子信息材料的主要材料有以下幾種:光電子材料、納米材料、寬禁半導(dǎo)體材料等等。目前,為了響應(yīng)電子信息材料的低碳經(jīng)濟(jì)發(fā)展,可以根據(jù)這些原料的特性研制出以下這些電子信息材料:

          1、電子信息材料中的光電子材料

          電子信息材料的光電子材料主要指的是液晶材料。目前,液晶材料已經(jīng)在電子信息行業(yè)得到了廣泛應(yīng)用,在電子信息行業(yè)里面,液晶材料絕大部分被應(yīng)用于電子顯示屏等高新技術(shù)范圍之內(nèi)。液晶材料的特性之一便是“光線扭曲向列型”,這種特性可以使液晶材料在有電流經(jīng)過的時(shí)候通過對電流的改變來實(shí)現(xiàn)對電子顯示屏上面的液晶序列的排列順序的改變。與此同時(shí),再有電流經(jīng)過電子顯示屏的液晶材料的時(shí)候,外面的光線是不能夠直接穿過電子顯示屏的液晶材料的,這就使得液晶材料有成為低碳經(jīng)濟(jì)的特性。與傳統(tǒng)的其他電子顯示屏材料相比,液晶材料具有很多優(yōu)良的特性,液晶材料的能耗低已經(jīng)精確的準(zhǔn)確性以及迅捷的反應(yīng),再加上柔和的調(diào)色功能。除此之外,液晶材料還是一種很有效的非線性光學(xué)材料,液晶材料的狀態(tài)一般是維持在軟凝聚的狀態(tài)。因此,液晶材料可以有效地實(shí)現(xiàn)光折變效應(yīng),可以在電子儀器在很低的電流供應(yīng)下,發(fā)揮出強(qiáng)勁的性能,具有很高的開發(fā)潛力。另外,根據(jù)光學(xué)原理之中的光的干涉效應(yīng),可以利用光線對液晶材料的干涉作用,使得液晶材料在反射類的光學(xué)器件里面得到廣泛的應(yīng)用。綜上所述,一系列優(yōu)良的特性使得液晶材料已經(jīng)逐步成為應(yīng)用最廣泛的電子顯示屏使用材料。

          2、電子信息材料中的集成電路和半導(dǎo)體材料

          目前,世界上的電子信息材料中的集成電路和半導(dǎo)體材料的最基礎(chǔ)的原材料大部分都是多晶硅原料,目前最廣泛采用的制作電子信息材料中的集成電路和半導(dǎo)體材料的技術(shù)則是經(jīng)過改進(jìn)的西門子法。經(jīng)過改良的西門子法制作多晶硅材料的集成電路和半導(dǎo)體材料的原理如下所述:使用鹽酸和工業(yè)使用的純硅粉在一個(gè)規(guī)定的溫度之下發(fā)生合成反應(yīng),最終生成三氯氫硅材料,然后再采用分離精餾的手段,對已經(jīng)制得的三氯氫硅材料進(jìn)行進(jìn)一步的分離提純工作,最后把提純后的三氯氫硅放置進(jìn)入氫還原儀器里面經(jīng)行相關(guān)反應(yīng)操作,最后制得高純度的多晶硅,再進(jìn)一步加工就成為了日常所使用的電子信息材料中的集成電路和半導(dǎo)體材料。

          通過改良的西門子法提煉出來的電子信息材料中的集成電路和半導(dǎo)體可以有效地改進(jìn)目前國際上的光伏零件問題。

          二、簡述電子信息材料在低碳經(jīng)濟(jì)中的發(fā)展應(yīng)用思路

          目前,根據(jù)節(jié)能環(huán)保和低碳經(jīng)濟(jì)的相關(guān)要求,電子信息材料在低碳經(jīng)濟(jì)中的發(fā)展應(yīng)用的主體模式應(yīng)當(dāng)找尋出新型的發(fā)展趨勢,其總體趨勢應(yīng)當(dāng)是朝向電子信息材料的尺寸擴(kuò)大化、電子零部件的智能化設(shè)計(jì)、電子材料的多功能作用趨勢、電子材料功能的高度集中化的趨勢發(fā)展。

          1、發(fā)展集成電路類的電子信息材料

          隨著電子科學(xué)與技術(shù)的不斷增長,目前的半導(dǎo)體材料和集成電路的主要材料已經(jīng)成為了環(huán)氧模塑料,通過這樣的原材料設(shè)計(jì),可以有效地使得電子信息材料可以滿足低碳經(jīng)濟(jì)的節(jié)能環(huán)保的要求。

          2、發(fā)展光電子材料類的電子信息材料

          隨著電子科學(xué)與技術(shù)的不斷增長,作為一種非常有效的信息傳輸類型的電子信息材料,光電子材料在近幾年來得到了快速發(fā)展的機(jī)會,這將很有效使得電子信息材料可以滿足低碳經(jīng)濟(jì)之中電子材料的多功能作用趨勢、電子材料功能的高度集中化的要求。

          3、發(fā)展新型元器件材料類的電子信息材料

          隨著電子科學(xué)與技術(shù)的不斷增長,作為一種非常有效的降低環(huán)境污染,并可以有效的降低電子信息材料能量消耗的材料,新型元器件材料正在逐漸成為電子信息材料的重點(diǎn)研究項(xiàng)目之一,其可以有效的滿足電子信息材料發(fā)展的電子信息材料的尺寸擴(kuò)大化、電子零部件的智能化設(shè)計(jì)要求。

          三、結(jié)語

          目前,電子信息材料的低碳發(fā)展已經(jīng)成為了電子信息行業(yè)要攻克的主要課題之一,隨著科學(xué)技術(shù)的不斷發(fā)展,越來越多的電子信息材料已經(jīng)可以很好的完成節(jié)能環(huán)保的要求。在本文中,筆者將結(jié)合對低碳經(jīng)濟(jì)概念的解讀,并簡要的描述了幾種新型的節(jié)能環(huán)保的電子信息材料,并通過這樣的方式,具體的談了談研究了電子信息材料在低碳經(jīng)濟(jì)中的發(fā)展應(yīng)用思路。但是,由于本人的知識水平有限,因此,本文如有不到之處,還望不吝指正。

          參考文獻(xiàn):

          [1]李來丙,李立波.新一代綠色無鹵化覆銅板的研制開發(fā)[J],工程塑料應(yīng)用,2013,32(5):42~44

          [2]謝廣超,杜新宇,韓江龍.環(huán)氧模塑料在半導(dǎo)體封裝中的應(yīng)用[J],中國集成電路,2013,(106):64~69

          [3]侯明,衣寶廉.燃料電池技術(shù)發(fā)展現(xiàn)狀[J],電源技術(shù),2012,32(10):649~654

          篇6

          1 引言

          隨著科技的不斷發(fā)展,大面積、低成本、柔性、輕巧便攜成為人們對新一代電子器件的追求目標(biāo)。π共軛有機(jī)小分子半導(dǎo)體和聚合物半導(dǎo)體由于可利用低成本高效率的印刷方式制備大面積柔性器件,目前已成為研究的熱門材料。通過分子結(jié)構(gòu)的設(shè)計(jì),材料的光電性質(zhì)也會隨之改變,這也使得有機(jī)發(fā)光二極管(OLEDs),有機(jī)場效應(yīng)晶體管(OFETs),有機(jī)光伏器件(OPVs),有機(jī)記憶存儲器及有機(jī)傳感器得到了很大的發(fā)展。

          光探測是有機(jī)半導(dǎo)體材料的重大的應(yīng)用之一。有機(jī)半導(dǎo)體的種類繁多,通過分子結(jié)構(gòu)設(shè)計(jì)可以實(shí)現(xiàn)從紫外到近紅外的全波段光的吸收或者特定波段光的吸收。有機(jī)半導(dǎo)體可低溫制備的特性使得大面積柔性光電系統(tǒng)的發(fā)展成為可能。本文主要介紹了光敏二極管和光敏晶體管這兩類光敏器件的研究現(xiàn)狀,并通過對這兩類光敏器件的研究和歸納展望光電系統(tǒng)的未來發(fā)展。

          2 光敏二極管

          2.1 可見光探測器

          可見光范圍的有機(jī)光探測器的研究在上個(gè)世紀(jì)90年代已有一些初期的報(bào)道,從那以后,越來越多的研究成功的制備出涵蓋整個(gè)可見光范圍的有機(jī)光探測器。無論是基于有機(jī)小分子還是聚合物,大部分器件都是建立在Donor/Acceptor (D/A)異質(zhì)結(jié)的基礎(chǔ)之上。對于有機(jī)小分子半導(dǎo)體器件而言,分子束沉積技術(shù)使得分子的納米結(jié)構(gòu)和形貌得到了良好的控制。較為復(fù)雜的是采用溶液法制備的光敏器件,其異質(zhì)結(jié)的形貌很難在納米尺度上進(jìn)行控制,且相容性較好的D/A對的選擇也起著關(guān)鍵的作用。其中為人熟知的溶液法制備的聚3-己基噻吩(P3HT)/富勒烯衍生物(PC61BM)異質(zhì)結(jié)對,具有較寬的光譜吸收范圍(從400nm到600nm),較高的載流子遷移率,其外量子效率(EQE)能達(dá)到70%。另外,有研究報(bào)道PC61BM的類似物PC71BM在可見光范圍內(nèi)具備更寬的光吸收。除此之外,新興的導(dǎo)電高分子如聚芴的衍生物及其共聚化合物也可成為供體(D)或者受體(A)的替代材料。與藍(lán)綠光的探測器相比,針對紅光的光敏二極管的研究相對較少。這是由于對紅光敏感的材料往往能帶間隙比較小,其合成比較困難,其溶解性和穩(wěn)定性較差。另外,由于能級間隙變小,要想找到能級匹配的D/A組合就變得更加困難。盡管如此,基于紅光-近紅外探測的器件在應(yīng)用上仍然得到了較大的發(fā)展,比如在光通訊領(lǐng)域,遠(yuǎn)程控制,環(huán)境控制或者生物醫(yī)療領(lǐng)域。

          2.2 全波段光探測器

          由于半導(dǎo)體材料對太陽光的吸收性能是提高太陽能電池效率的關(guān)鍵因素,因此隨著對光伏器件研究的加深,基于半導(dǎo)體材料光吸收性能的光敏二極管也得到了大力的發(fā)展。就聚合物而言,通過稠雜環(huán)的聚合反應(yīng)可以得到能帶間隙較窄的導(dǎo)電聚合物,用于制備全波段的光探測器。2007年,Yang課題組采用酯基改性的聚噻吩(PTT)與PC61BM形成異質(zhì)結(jié)光敏探測器能探測900nm的光(800nm波長時(shí)EQE值達(dá)到40%)。用類似的方法,Gong等人使用窄帶隙的聚合物PDDTT與PC61BM混合形成異質(zhì)結(jié)制備出能探測300nm到1450nm的全波段光探測器(900nm波長時(shí)EQE值達(dá)到30%)。對于小分子而言,卟啉類小分子化合物在長波長范圍內(nèi)有良好的吸收特性。最近報(bào)道的采用溶液法制備的卟啉陣列光敏探測器,其中卟啉單元呈帶狀排列,器件的EQE值在1400nm波長時(shí)達(dá)到了10%。這樣的光敏器件的制備一般需要找到能級匹配的D/A對,混合制備形成異質(zhì)結(jié)。除此之外,若要實(shí)現(xiàn)對近紅外部分的光探測一般需要引入雜化體系,如有機(jī)小分子與聚合物混合,或者有機(jī)材料與無機(jī)材料混合。2009年Arnold等人將碳納米管與C60混合制備出了性能優(yōu)異的光敏探測器,半導(dǎo)體性的碳納米管受光照射激發(fā)產(chǎn)生的電子-空穴對在碳納米管與C60的界面處被離解,增加了載流子密度,使光電流明顯增大。在制備過程中,使用共軛聚合物(P3HT或者PPV)包裹碳納米管增加其溶解性,使碳納米管之間能相互分離,并在薄膜上均勻的分布。碳納米管的直徑的高度分散性使器件實(shí)現(xiàn)了寬范圍的光吸收(從400nm到1600nm)。

          除此之外,選擇性光探測器是采用本身對光具有選擇性吸收的半導(dǎo)體材料作為活性層制備而成,其中紫外光探測是光敏探測研究的一大重點(diǎn),被廣泛用于科學(xué),商業(yè)和軍事領(lǐng)域。但是由于紫外光能量較高,對有機(jī)半導(dǎo)體材料有破壞作用,因此對紫外探測器件的穩(wěn)定性考量是器件制備過程中十分重要的一步。

          3 有機(jī)光敏晶體管

          起初,基于共軛有機(jī)小分子和聚合物半導(dǎo)體的光敏晶體管的報(bào)道并沒有引起太大的關(guān)注,因?yàn)榕c無機(jī)光敏晶體管相比,這些有機(jī)晶體管的R值小,光敏開關(guān)比Ilight/Idark低,載流子遷移率也比較低。隨后,Noh等人制備的基于BPTT半導(dǎo)體的改進(jìn)型的光敏晶體管的開關(guān)比能達(dá)到無定型硅基光敏晶體管的100倍,這成為對有機(jī)光敏晶體管進(jìn)行深入的研究與發(fā)展的開端。有機(jī)光敏晶體管常用的小分子材料有并五苯、酞菁銅等。采用并五苯與酞菁銅作為活性材料的光敏晶體管器件其R值分別是10-50A/W和1.5-2.4A/W。除了小分子有機(jī)光敏晶體管外,利用聚合物半導(dǎo)體作為活性層有望制備全有機(jī)的柔性光敏晶體管。Narayan等人采用P3OT作為半導(dǎo)體,PVA作為絕緣層制備的柔性器件,其在1μW時(shí)光敏開關(guān)比達(dá)到100倍,遠(yuǎn)高于傳統(tǒng)的兩端二極管器件。另外,D/A異質(zhì)結(jié)也被引入用于光敏晶體管的制備。通常是將兩種能級匹配的半導(dǎo)體材料混合作為晶體管的活性材料部分,由于晶體管的第三端作用往往會使光電流大大增加,使光敏晶體管器件的性能更好。

          4 結(jié)論

          篇7

          中圖分類號:TN405文獻(xiàn)標(biāo)識碼:A文章編號:1674-098X(2019)09(c)-0070-02

          微電子技術(shù)作為當(dāng)今工業(yè)信息社會發(fā)展最快、最重要的技術(shù)之一,是電子信息產(chǎn)業(yè)的“心臟”。而微電子技術(shù)的重要標(biāo)志,正是半導(dǎo)體集成電路技術(shù)的飛速進(jìn)步和發(fā)展。多年來,隨著我國對微電子技術(shù)的重視和積極布局投入,結(jié)合社會良好的創(chuàng)新發(fā)展氛圍,我國的微電子技術(shù)得到了迅速的發(fā)展和進(jìn)步。目前我國自主制造的集成芯片在射頻通信、雷達(dá)電子、數(shù)字多媒體處理器中已經(jīng)得到了廣泛應(yīng)用。但總體來看,我國的核心集成電路基礎(chǔ)元器件的研發(fā)水平、制造能力等還和發(fā)展較早的發(fā)達(dá)國家存在一定差距,唯有繼續(xù)積極布局,完善創(chuàng)新體系,才能逐漸與世界先進(jìn)水平接軌。集成電路技術(shù),主要包括電路設(shè)計(jì)、制造工藝、封裝檢測幾大技術(shù)體系,隨著集成電路產(chǎn)業(yè)的深入發(fā)展,制造和封裝技術(shù)已經(jīng)成為微電子產(chǎn)業(yè)的重要支柱。本文將對微電子技術(shù)的制造和封裝技術(shù)的發(fā)展和應(yīng)用進(jìn)行簡要說明與研究。

          1微電子制造技術(shù)

          集成電路制造工藝主要可以分為材料工藝和半導(dǎo)體工藝。材料工藝包括各種圓片的制備,包括從單晶拉制到外延的多個(gè)工藝,傳統(tǒng)Si晶圓制造的主要工藝包括單晶拉制、切片、研磨拋光、外延生長等工序,而GaAs的全離子注入工藝所需要的是拋光好的單晶片(襯底片),不需要外延。半導(dǎo)體工藝總體可以概括為圖形制備、圖形轉(zhuǎn)移和擴(kuò)散形成特征區(qū)等三大步。圖形制備是以光刻工藝為主,目前最具代表性的光刻工藝制程是28nm。圖形轉(zhuǎn)移是將光刻形成的圖形轉(zhuǎn)移到電路載體,如介質(zhì)、半導(dǎo)體和金屬中,以實(shí)現(xiàn)集成電路的電氣功能。注入或擴(kuò)散是通過引入外來雜質(zhì),在半導(dǎo)體某些區(qū)域?qū)崿F(xiàn)有效摻雜,形成不同載流子類型或不同濃度分布的結(jié)構(gòu)和功能。

          從歷史進(jìn)程來看,硅和鍺是最早被應(yīng)用于集成電路制造的半導(dǎo)體材料。隨著半導(dǎo)體材料和微電子制造技術(shù)的發(fā)展,以GaAs為代表的第二代半導(dǎo)體材料逐漸被廣泛應(yīng)用。直到現(xiàn)在第三代半導(dǎo)體材料GaN和SiC已經(jīng)憑借其大功率、寬禁帶等特性在迅速占據(jù)市場。在這三代半導(dǎo)體材料的迭展中,其特征尺寸逐漸由毫米縮小到當(dāng)前的14納米、7納米水平,而在當(dāng)前微電子制造技術(shù)的持續(xù)發(fā)展中,材料和設(shè)備正在成為制造能力提升的決定性因素,包括光刻設(shè)備、掩模制造技術(shù)設(shè)備和光刻膠材料技術(shù)等。材料的研發(fā)能力、設(shè)備制造和應(yīng)用能力的提升直接決定著當(dāng)下和未來微電子制造水平的提升。

          總之,推動微電子制造技術(shù)發(fā)展的動力來自于應(yīng)用設(shè)計(jì)需求和其自身的發(fā)展需要。從長遠(yuǎn)看,新材料的出現(xiàn)帶來的優(yōu)越特性,是帶動微電子器件及其制造技術(shù)的提升的重要表現(xiàn)形式。較為典型的例子是GaN半導(dǎo)體材料及其器件的技術(shù)突破直接推動了藍(lán)光和白光LED的誕生,以及高頻大功率器件的迅速發(fā)展。作為微電子器件服務(wù)媒介,信息技術(shù)的發(fā)展需求依然是微電子制造技術(shù)發(fā)展的重要動力。信號的生成、存儲、傳輸和處理等在超高速、高頻、大容量等技術(shù)要求下飛速發(fā)展,也會持續(xù)推動微電子制造技術(shù)在加工技術(shù)、制造能力等方面相應(yīng)提升。微電子制造技術(shù)發(fā)展的第二個(gè)主要表現(xiàn)形式是自身能力的提升,其主要來自于制造設(shè)備技術(shù)、應(yīng)用能力的迅速發(fā)展和相應(yīng)配套服務(wù)材料技術(shù)的同步提升。

          2微電子封裝技術(shù)

          微電子封裝的技術(shù)種類很多,按照封裝引腳結(jié)構(gòu)不同可以分為通孔插裝式和表面安裝式。通常來說集成電路封裝技術(shù)的發(fā)展可以分為三個(gè)階段:第一階段,20世紀(jì)70年代,當(dāng)時(shí)微電子封裝技術(shù)主要是以引腳插裝型封裝技術(shù)為主。第二階段,20世紀(jì)80年代,SMT技術(shù)逐漸走向成熟,表面安裝技術(shù)由于其可適應(yīng)更短引腳節(jié)距和高密度電路的特點(diǎn)逐漸取代引腳直插技術(shù)。第三階段,20世紀(jì)90年代,隨著電子技術(shù)的不斷發(fā)展以及集成電路技術(shù)的不斷進(jìn)步,對于微電子封裝技術(shù)的要求越來越高,促使出現(xiàn)了BGA、CSP、MCM等多種封裝技術(shù)。使引腳間距從過去的1.27mm、0.635mm到目前的0.5mm、0.4mm、0.3mm發(fā)展,封裝密度也越來越大,CSP的芯片尺寸與封裝尺寸之比已經(jīng)小于1.2。

          目前,元器件尺寸已日益逼近極限。由于受制于設(shè)備能力、PCB設(shè)計(jì)和加工能力等限制,元器件尺寸已經(jīng)很難繼續(xù)縮小。但是在當(dāng)今信息時(shí)代,依然在持續(xù)對電子設(shè)備提出更輕薄、高性能的需求。在此動力下,依然推動著微電子封裝繼續(xù)向MCM、SIP、SOC封裝繼續(xù)發(fā)展,實(shí)現(xiàn)IC封裝和板級電路組裝這兩個(gè)封裝層次的技術(shù)深度融合將是目前發(fā)展的重點(diǎn)方向。

          芯片級互聯(lián)技術(shù)是電子封裝技術(shù)的核心和關(guān)鍵。無論是芯片裝連還是電子封裝技術(shù)都是在基板上進(jìn)行操作,因此這些都能夠運(yùn)用到互聯(lián)的微技術(shù),微互聯(lián)技術(shù)是封裝技術(shù)的核心,現(xiàn)在的微互聯(lián)技術(shù)主要包含以下幾個(gè):引線鍵合技術(shù),是把半導(dǎo)體芯片與電子封裝的外部框架運(yùn)用一定的手段連接起來的技術(shù),工藝成熟,易于返工,依然是目前應(yīng)用最廣泛的芯片互連技術(shù);載體自動焊技術(shù),載體自動焊技術(shù)可通過帶盤連續(xù)作業(yè),用聚合物做成相應(yīng)的引腳,將相應(yīng)的晶片放入對應(yīng)的鍵合區(qū),最后通過熱電極把全部的引線有序地鍵合到位置,載體自動焊技術(shù)的主要優(yōu)點(diǎn)是組裝密度高,可互連器件的引腳多,間距小,但設(shè)備投資大、生產(chǎn)線長、不易返工等特性限制了該技術(shù)的應(yīng)用。倒裝芯片技術(shù)是把芯片直接倒置放在相應(yīng)的基片上,焊區(qū)能夠放在芯片的任意地方,可大幅提高I/O數(shù)量,提高封裝密度。但凸點(diǎn)制作技術(shù)要求高、不能返工等問題也依然有待繼續(xù)研究,芯片倒裝技術(shù)是目前和未來最值得研究和應(yīng)用的芯片互連技術(shù)。

          篇8

          1半導(dǎo)體材料的戰(zhàn)略地位

          上世紀(jì)中葉,單晶硅和半導(dǎo)體晶體管的發(fā)明及其硅集成電路的研制成功,導(dǎo)致了電子工業(yè)革命;上世紀(jì)70年代初石英光導(dǎo)纖維材料和GaAs激光器的發(fā)明,促進(jìn)了光纖通信技術(shù)迅速發(fā)展并逐步形成了高新技術(shù)產(chǎn)業(yè),使人類進(jìn)入了信息時(shí)代。超晶格概念的提出及其半導(dǎo)體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設(shè)計(jì)思想,使半導(dǎo)體器件的設(shè)計(jì)與制造從“雜質(zhì)工程”發(fā)展到“能帶工程”。納米科學(xué)技術(shù)的發(fā)展和應(yīng)用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強(qiáng)大的新型器件與電路,必將深刻地影響著世界的政治、經(jīng)濟(jì)格局和軍事對抗的形式,徹底改變?nèi)藗兊纳罘绞健?/p>

          2幾種主要半導(dǎo)體材料的發(fā)展現(xiàn)狀與趨勢

          2.1硅材料

          從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發(fā)展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實(shí)現(xiàn)大規(guī)模工業(yè)生產(chǎn),基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術(shù)正處在由實(shí)驗(yàn)室向工業(yè)生產(chǎn)轉(zhuǎn)變中。目前300mm,0.18μm工藝的硅ULSI生產(chǎn)線已經(jīng)投入生產(chǎn),300mm,0.13μm工藝生產(chǎn)線也將在2003年完成評估。18英寸重達(dá)414公斤的硅單晶和18英寸的硅園片已在實(shí)驗(yàn)室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。

          從進(jìn)一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發(fā)展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發(fā)展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發(fā)中。

          理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應(yīng)對現(xiàn)有器件特性影響所帶來的物理限制和光刻技術(shù)的限制問題,更重要的是將受硅、SiO2自身性質(zhì)的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統(tǒng)集成芯片技術(shù)等來提高ULSI的集成度、運(yùn)算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計(jì)算和DNA生物計(jì)算等之外,還把目光放在以GaAs、InP為基的化合物半導(dǎo)體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點(diǎn)材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導(dǎo)體材料研發(fā)的重點(diǎn)。

          2.2GaAs和InP單晶材料

          GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點(diǎn);在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨(dú)特的優(yōu)勢。

          目前,世界GaAs單晶的總年產(chǎn)量已超過200噸,其中以低位錯(cuò)密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導(dǎo)電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發(fā)展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產(chǎn)線。InP具有比GaAs更優(yōu)越的高頻性能,發(fā)展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關(guān)鍵技術(shù)尚未完全突破,價(jià)格居高不下。

          GaAs和InP單晶的發(fā)展趨勢是:

          (1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產(chǎn),預(yù)計(jì)本世紀(jì)初的頭幾年直徑為6英寸的SI-GaAs也將投入工業(yè)應(yīng)用。

          (2)。提高材料的電學(xué)和光學(xué)微區(qū)均勻性。

          (3)。降低單晶的缺陷密度,特別是位錯(cuò)。

          (4)。GaAs和InP單晶的VGF生長技術(shù)發(fā)展很快,很有可能成為主流技術(shù)。

          2.3半導(dǎo)體超晶格、量子阱材料

          半導(dǎo)體超薄層微結(jié)構(gòu)材料是基于先進(jìn)生長技術(shù)(MBE,MOCVD)的新一代人工構(gòu)造材料。它以全新的概念改變著光電子和微電子器件的設(shè)計(jì)思想,出現(xiàn)了“電學(xué)和光學(xué)特性可剪裁”為特征的新范疇,是新一代固態(tài)量子器件的基礎(chǔ)材料。

          (1)Ⅲ-V族超晶格、量子阱材料。

          GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應(yīng)變補(bǔ)償材料體系已發(fā)展得相當(dāng)成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達(dá)fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質(zhì)結(jié)雙極晶體管(HBT)的最高頻率fmax也已高達(dá)500GHz,HEMT邏輯電路研制也發(fā)展很快?;谏鲜霾牧象w系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發(fā)光二極管和紅光激光器以及大功率半導(dǎo)體量子阱激光器已商品化;表面光發(fā)射器件和光雙穩(wěn)器件等也已達(dá)到或接近達(dá)到實(shí)用化水平。目前,研制高質(zhì)量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調(diào)制器單片集成InP基多量子阱材料和超高速驅(qū)動電路所需的低維結(jié)構(gòu)材料是解決光纖通信瓶頸問題的關(guān)鍵,在實(shí)驗(yàn)室西門子公司已完成了80×40Gbps傳輸40km的實(shí)驗(yàn)。另外,用于制造準(zhǔn)連續(xù)兆瓦級大功率激光陣列的高質(zhì)量量子阱材料也受到人們的重視。

          雖然常規(guī)量子阱結(jié)構(gòu)端面發(fā)射激光器是目前光電子領(lǐng)域占統(tǒng)治地位的有源器件,但由于其有源區(qū)極?。ā?.01μm)端面光電災(zāi)變損傷,大電流電熱燒毀和光束質(zhì)量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區(qū)量子級聯(lián)耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯(lián)激光器,輸出功率達(dá)5W以上;2000年初,法國湯姆遜公司又報(bào)道了單個(gè)激光器準(zhǔn)連續(xù)輸出功率超過10瓦好結(jié)果。最近,我國的科研工作者又提出并開展了多有源區(qū)縱向光耦合垂直腔面發(fā)射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質(zhì)量的新型激光器,在未來光通信、光互聯(lián)與光電信息處理方面有著良好的應(yīng)用前景。

          為克服PN結(jié)半導(dǎo)體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實(shí)驗(yàn)室發(fā)明了基于量子阱內(nèi)子帶躍遷和阱間共振隧穿的量子級聯(lián)激光器,突破了半導(dǎo)體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯(lián)激光器(QCLs)發(fā)明以來,Bell實(shí)驗(yàn)室等的科學(xué)家,在過去的7年多的時(shí)間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進(jìn)展。2001年瑞士Neuchatel大學(xué)的科學(xué)家采用雙聲子共振和三量子阱有源區(qū)結(jié)構(gòu)使波長為9.1μm的QCLs的工作溫度高達(dá)312K,連續(xù)輸出功率3mW.量子級聯(lián)激光器的工作波長已覆蓋近紅外到遠(yuǎn)紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調(diào)制器和無線光學(xué)連接等方面顯示出重要的應(yīng)用前景。中科院上海微系統(tǒng)和信息技術(shù)研究所于1999年研制成功120K5μm和250K8μm的量子級聯(lián)激光器;中科院半導(dǎo)體研究所于2000年又研制成功3.7μm室溫準(zhǔn)連續(xù)應(yīng)變補(bǔ)償量子級聯(lián)激光器,使我國成為能研制這類高質(zhì)量激光器材料為數(shù)不多的幾個(gè)國家之一。

          目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結(jié)構(gòu)材料發(fā)展的主流方向,正從直徑3英寸向4英寸過渡;生產(chǎn)型的MBE和M0CVD設(shè)備已研制成功并投入使用,每臺年生產(chǎn)能力可高達(dá)3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產(chǎn)型MBE和MOCVD設(shè)備的成熟與應(yīng)用,必然促進(jìn)襯底材料設(shè)備和材料評價(jià)技術(shù)的發(fā)展。

          (2)硅基應(yīng)變異質(zhì)結(jié)構(gòu)材料。

          硅基光、電器件集成一直是人們所追求的目標(biāo)。但由于硅是間接帶隙,如何提高硅基材料發(fā)光效率就成為一個(gè)亟待解決的問題。雖經(jīng)多年研究,但進(jìn)展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結(jié)構(gòu),Ge/Si量子點(diǎn)和量子點(diǎn)超晶格材料,Si/SiC量子點(diǎn)材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發(fā)光器件和有關(guān)納米硅的受激放大現(xiàn)象的報(bào)道,使人們看到了一線希望。

          另一方面,GeSi/Si應(yīng)變層超晶格材料,因其在新一代移動通信上的重要應(yīng)用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達(dá)200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。

          盡管GaAs/Si和InP/Si是實(shí)現(xiàn)光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數(shù)等不同造成的高密度失配位錯(cuò)而導(dǎo)致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協(xié)變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進(jìn)展。

          2.4一維量子線、零維量子點(diǎn)半導(dǎo)體微結(jié)構(gòu)材料

          基于量子尺寸效應(yīng)、量子干涉效應(yīng),量子隧穿效應(yīng)和庫侖阻效應(yīng)以及非線性光學(xué)效應(yīng)等的低維半導(dǎo)體材料是一種人工構(gòu)造(通過能帶工程實(shí)施)的新型半導(dǎo)體材料,是新一代微電子、光電子器件和電路的基礎(chǔ)。它的發(fā)展與應(yīng)用,極有可能觸發(fā)新的技術(shù)革命。

          目前低維半導(dǎo)體材料生長與制備主要集中在幾個(gè)比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進(jìn)展。俄羅斯約飛技術(shù)物理所MBE小組,柏林的俄德聯(lián)合研制小組和中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點(diǎn)激光器,工作波長lμm左右,單管室溫連續(xù)輸出功率高達(dá)3.6~4W.特別應(yīng)當(dāng)指出的是我國上述的MBE小組,2001年通過在高功率量子點(diǎn)激光器的有源區(qū)材料結(jié)構(gòu)中引入應(yīng)力緩解層,抑制了缺陷和位錯(cuò)的產(chǎn)生,提高了量子點(diǎn)激光器的工作壽命,室溫下連續(xù)輸出功率為1W時(shí)工作壽命超過5000小時(shí),這是大功率激光器的一個(gè)關(guān)鍵參數(shù),至今未見國外報(bào)道。

          在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進(jìn)展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報(bào)道了可在室溫工作的單電子開關(guān)器件,1998年Yauo等人采用0.25微米工藝技術(shù)實(shí)現(xiàn)了128Mb的單電子存貯器原型樣機(jī)的制造,這是在單電子器件在高密度存貯電路的應(yīng)用方面邁出的關(guān)鍵一步。目前,基于量子點(diǎn)的自適應(yīng)網(wǎng)絡(luò)計(jì)算機(jī),單光子源和應(yīng)用于量子計(jì)算的量子比特的構(gòu)建等方面的研究也正在進(jìn)行中。

          與半導(dǎo)體超晶格和量子點(diǎn)結(jié)構(gòu)的生長制備相比,高度有序的半導(dǎo)體量子線的制備技術(shù)難度較大。中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組,在繼利用MBE技術(shù)和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結(jié)構(gòu)的基礎(chǔ)上,對InAs/InAlAs量子線超晶格的空間自對準(zhǔn)(垂直或斜對準(zhǔn))的物理起因和生長控制進(jìn)行了研究,取得了較大進(jìn)展。

          王中林教授領(lǐng)導(dǎo)的喬治亞理工大學(xué)的材料科學(xué)與工程系和化學(xué)與生物化學(xué)系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發(fā)技術(shù),成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導(dǎo)體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現(xiàn)出高純、結(jié)構(gòu)均勻和單晶體,幾乎無缺陷和位錯(cuò);納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達(dá)數(shù)毫米。這種半導(dǎo)體氧化物納米帶是一個(gè)理想的材料體系,可以用來研究載流子維度受限的輸運(yùn)現(xiàn)象和基于它的功能器件制造。香港城市大學(xué)李述湯教授和瑞典隆德大學(xué)固體物理系納米中心的LarsSamuelson教授領(lǐng)導(dǎo)的小組,分別在SiO2/Si和InAs/InP半導(dǎo)體量子線超晶格結(jié)構(gòu)的生長制各方面也取得了重要進(jìn)展。

          低維半導(dǎo)體結(jié)構(gòu)制備的方法很多,主要有:微結(jié)構(gòu)材料生長和精細(xì)加工工藝相結(jié)合的方法,應(yīng)變自組裝量子線、量子點(diǎn)材料生長技術(shù),圖形化襯底和不同取向晶面選擇生長技術(shù),單原子操縱和加工技術(shù),納米結(jié)構(gòu)的輻照制備技術(shù),及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學(xué)方法制備量子點(diǎn)和量子線的技術(shù)等。目前發(fā)展的主要趨勢是尋找原子級無損傷加工方法和納米結(jié)構(gòu)的應(yīng)變自組裝可控生長技術(shù),以求獲得大小、形狀均勻、密度可控的無缺陷納米結(jié)構(gòu)。

          2.5寬帶隙半導(dǎo)體材料

          寬帶隙半導(dǎo)體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點(diǎn),成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點(diǎn)。目前,GaN基藍(lán)綠光發(fā)光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達(dá)140GHz,fT=67GHz,跨導(dǎo)為260ms/mm;HEMT器件也相繼問世,發(fā)展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業(yè)有限公司2000年宣稱,他們采用熱力學(xué)方法已研制成功2英寸GaN單晶材料,這將有力的推動藍(lán)光激光器和GaN基電子器件的發(fā)展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因?yàn)樗鼈冊陂L波長光通信用高T0光源和太陽能電池等方面顯示了重要應(yīng)用前景。

          以Cree公司為代表的體SiC單晶的研制已取得突破性進(jìn)展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍(lán)綠光LED業(yè)已上市,并參于與以藍(lán)寶石為襯低的GaN基發(fā)光器件的竟?fàn)帯F渌鸖iC相關(guān)高溫器件的研制也取得了長足的進(jìn)步。目前存在的主要問題是材料中的缺陷密度高,且價(jià)格昂貴。

          II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點(diǎn)而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的。經(jīng)過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時(shí),但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點(diǎn)缺陷密度和進(jìn)一步降低失配位錯(cuò)和解決歐姆接觸等問題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問題。

          寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對稱性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯(cuò)和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個(gè)迫切要解決的關(guān)鍵科學(xué)問題。這個(gè)問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應(yīng)用領(lǐng)域。

          目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實(shí)驗(yàn)室研制階段,不少影響這類材料發(fā)展的關(guān)鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實(shí)用化的關(guān)鍵問題,國內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。

          3光子晶體

          光子晶體是一種人工微結(jié)構(gòu)材料,介電常數(shù)周期的被調(diào)制在與工作波長相比擬的尺度,來自結(jié)構(gòu)單元的散射波的多重干涉形成一個(gè)光子帶隙,與半導(dǎo)體材料的電子能隙相似,并可用類似于固態(tài)晶體中的能帶論來描述三維周期介電結(jié)構(gòu)中光波的傳播,相應(yīng)光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態(tài)密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質(zhì)量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結(jié)合脈沖激光蒸發(fā)方法,即先用脈沖激光蒸發(fā)制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發(fā)光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個(gè)理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進(jìn)展,但三維光子晶體的研究,仍是一個(gè)具有挑戰(zhàn)性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進(jìn)展。

          4量子比特構(gòu)建與材料

          隨著微電子技術(shù)的發(fā)展,計(jì)算機(jī)芯片集成度不斷增高,器件尺寸越來越?。╪m尺度)并最終將受到器件工作原理和工藝技術(shù)限制,而無法滿足人類對更大信息量的需求。為此,發(fā)展基于全新原理和結(jié)構(gòu)的功能強(qiáng)大的計(jì)算機(jī)是21世紀(jì)人類面臨的巨大挑戰(zhàn)之一。1994年Shor基于量子態(tài)疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。

          所謂量子計(jì)算機(jī)是應(yīng)用量子力學(xué)原理進(jìn)行計(jì)的裝置,理論上講它比傳統(tǒng)計(jì)算機(jī)有更快的運(yùn)算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計(jì)算機(jī)理想極限。實(shí)現(xiàn)量子比特構(gòu)造和量子計(jì)算機(jī)的設(shè)想方案很多,其中最引人注目的是Kane最近提出的一個(gè)實(shí)現(xiàn)大規(guī)模量子計(jì)算的方案。其核心是利用硅納米電子器件中磷施主核自旋進(jìn)行信息編碼,通過外加電場控制核自旋間相互作用實(shí)現(xiàn)其邏輯運(yùn)算,自旋測量是由自旋極化電子電流來完成,計(jì)算機(jī)要工作在mK的低溫下。

          這種量子計(jì)算機(jī)的最終實(shí)現(xiàn)依賴于與硅平面工藝兼容的硅納米電子技術(shù)的發(fā)展。除此之外,為了避免雜質(zhì)對磷核自旋的干擾,必需使用高純(無雜質(zhì))和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規(guī)則的磷原子陣列等是實(shí)現(xiàn)量子計(jì)算的關(guān)鍵。量子態(tài)在傳輸,處理和存儲過程中可能因環(huán)境的耦合(干擾),而從量子疊加態(tài)演化成經(jīng)典的混合態(tài),即所謂失去相干,特別是在大規(guī)模計(jì)算中能否始終保持量子態(tài)間的相干是量子計(jì)算機(jī)走向?qū)嵱没八匦杩朔碾y題。

          5發(fā)展我國半導(dǎo)體材料的幾點(diǎn)建議

          鑒于我國目前的工業(yè)基礎(chǔ),國力和半導(dǎo)體材料的發(fā)展水平,提出以下發(fā)展建議供參考。

          5.1硅單晶和外延材料硅材料作為微電子技術(shù)的主導(dǎo)地位

          至少到本世紀(jì)中葉都不會改變,至今國內(nèi)各大集成電路制造廠家所需的硅片基本上是依賴進(jìn)口。目前國內(nèi)雖已可拉制8英寸的硅單晶和小批量生產(chǎn)6英寸的硅外延片,然而都未形成穩(wěn)定的批量生產(chǎn)能力,更談不上規(guī)模生產(chǎn)。建議國家集中人力和財(cái)力,首先開展8英寸硅單晶實(shí)用化和6英寸硅外延片研究開發(fā),在“十五”的后期,爭取做到8英寸集成電路生產(chǎn)線用硅單晶材料的國產(chǎn)化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應(yīng)有8~12英寸硅單晶、片材和8英寸硅外延片的規(guī)模生產(chǎn)能力;更大直徑的硅單晶、片材和外延片也應(yīng)及時(shí)布點(diǎn)研制。另外,硅多晶材料生產(chǎn)基地及其相配套的高純石英、氣體和化學(xué)試劑等也必需同時(shí)給以重視,只有這樣,才能逐步改觀我國微電子技術(shù)的落后局面,進(jìn)入世界發(fā)達(dá)國家之林。

          5.2GaAs及其有關(guān)化合物半導(dǎo)體單晶材料發(fā)展建議

          GaAs、InP等單晶材料同國外的差距主要表現(xiàn)在拉晶和晶片加工設(shè)備落后,沒有形成生產(chǎn)能力。相信在國家各部委的統(tǒng)一組織、領(lǐng)導(dǎo)下,并爭取企業(yè)介入,建立我國自己的研究、開發(fā)和生產(chǎn)聯(lián)合體,取各家之長,分工協(xié)作,到2010年趕上世界先進(jìn)水平是可能的。要達(dá)到上述目的,到“十五”末應(yīng)形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產(chǎn)能力,以滿足我國不斷發(fā)展的微電子和光電子工業(yè)的需術(shù)。到2010年,應(yīng)當(dāng)實(shí)現(xiàn)4英寸GaAs生產(chǎn)線的國產(chǎn)化,并具有滿足6英寸線的供片能力。

          5.3發(fā)展超晶格、量子阱和一維、零維半導(dǎo)體微結(jié)構(gòu)材料的建議

          (1)超晶格、量子阱材料從目前我國國力和我們已有的基礎(chǔ)出發(fā),應(yīng)以三基色(超高亮度紅、綠和藍(lán)光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強(qiáng)MBE和MOCVD兩個(gè)基地的建設(shè),引進(jìn)必要的適合批量生產(chǎn)的工業(yè)型MBE和MOCVD設(shè)備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍(lán)綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實(shí)用化研究是當(dāng)務(wù)之急,爭取在“十五”末,能滿足國內(nèi)2、3和4英寸GaAs生產(chǎn)線所需要的異質(zhì)結(jié)材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結(jié)構(gòu)材料的生產(chǎn)能力。達(dá)到本世紀(jì)初的國際水平。

          寬帶隙高溫半導(dǎo)體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應(yīng)擇優(yōu)布點(diǎn),分別做好研究與開發(fā)工作。

          篇9

          1半導(dǎo)體材料的戰(zhàn)略地位

          上世紀(jì)中葉,單晶硅和半導(dǎo)體晶體管的發(fā)明及其硅集成電路的研制成功,導(dǎo)致了電子工業(yè)革命;上世紀(jì)70年代初石英光導(dǎo)纖維材料和GaAs激光器的發(fā)明,促進(jìn)了光纖通信技術(shù)迅速發(fā)展并逐步形成了高新技術(shù)產(chǎn)業(yè),使人類進(jìn)入了信息時(shí)代。超晶格概念的提出及其半導(dǎo)體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設(shè)計(jì)思想,使半導(dǎo)體器件的設(shè)計(jì)與制造從“雜質(zhì)工程”發(fā)展到“能帶工程”。納米科學(xué)技術(shù)的發(fā)展和應(yīng)用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強(qiáng)大的新型器件與電路,必將深刻地影響著世界的政治、經(jīng)濟(jì)格局和軍事對抗的形式,徹底改變?nèi)藗兊纳罘绞健?/p>

          2幾種主要半導(dǎo)體材料的發(fā)展現(xiàn)狀與趨勢

          2.1硅材料

          從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發(fā)展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實(shí)現(xiàn)大規(guī)模工業(yè)生產(chǎn),基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術(shù)正處在由實(shí)驗(yàn)室向工業(yè)生產(chǎn)轉(zhuǎn)變中。目前300mm,0.18μm工藝的硅ULSI生產(chǎn)線已經(jīng)投入生產(chǎn),300mm,0.13μm工藝生產(chǎn)線也將在2003年完成評估。18英寸重達(dá)414公斤的硅單晶和18英寸的硅園片已在實(shí)驗(yàn)室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。

          從進(jìn)一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發(fā)展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發(fā)展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發(fā)中。

          理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應(yīng)對現(xiàn)有器件特性影響所帶來的物理限制和光刻技術(shù)的限制問題,更重要的是將受硅、SiO2自身性質(zhì)的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統(tǒng)集成芯片技術(shù)等來提高ULSI的集成度、運(yùn)算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計(jì)算和DNA生物計(jì)算等之外,還把目光放在以GaAs、InP為基的化合物半導(dǎo)體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點(diǎn)材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導(dǎo)體材料研發(fā)的重點(diǎn)。

          2.2GaAs和InP單晶材料

          GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點(diǎn);在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨(dú)特的優(yōu)勢。

          目前,世界GaAs單晶的總年產(chǎn)量已超過200噸,其中以低位錯(cuò)密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導(dǎo)電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發(fā)展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產(chǎn)線。InP具有比GaAs更優(yōu)越的高頻性能,發(fā)展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關(guān)鍵技術(shù)尚未完全突破,價(jià)格居高不下。

          GaAs和InP單晶的發(fā)展趨勢是:

          (1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產(chǎn),預(yù)計(jì)本世紀(jì)初的頭幾年直徑為6英寸的SI-GaAs也將投入工業(yè)應(yīng)用。

          (2)。提高材料的電學(xué)和光學(xué)微區(qū)均勻性。

          (3)。降低單晶的缺陷密度,特別是位錯(cuò)。

          (4)。GaAs和InP單晶的VGF生長技術(shù)發(fā)展很快,很有可能成為主流技術(shù)。

          2.3半導(dǎo)體超晶格、量子阱材料

          半導(dǎo)體超薄層微結(jié)構(gòu)材料是基于先進(jìn)生長技術(shù)(MBE,MOCVD)的新一代人工構(gòu)造材料。它以全新的概念改變著光電子和微電子器件的設(shè)計(jì)思想,出現(xiàn)了“電學(xué)和光學(xué)特性可剪裁”為特征的新范疇,是新一代固態(tài)量子器件的基礎(chǔ)材料。

          (1)Ⅲ-V族超晶格、量子阱材料。

          GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應(yīng)變補(bǔ)償材料體系已發(fā)展得相當(dāng)成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達(dá)fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質(zhì)結(jié)雙極晶體管(HBT)的最高頻率fmax也已高達(dá)500GHz,HEMT邏輯電路研制也發(fā)展很快。基于上述材料體系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發(fā)光二極管和紅光激光器以及大功率半導(dǎo)體量子阱激光器已商品化;表面光發(fā)射器件和光雙穩(wěn)器件等也已達(dá)到或接近達(dá)到實(shí)用化水平。目前,研制高質(zhì)量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調(diào)制器單片集成InP基多量子阱材料和超高速驅(qū)動電路所需的低維結(jié)構(gòu)材料是解決光纖通信瓶頸問題的關(guān)鍵,在實(shí)驗(yàn)室西門子公司已完成了80×40Gbps傳輸40km的實(shí)驗(yàn)。另外,用于制造準(zhǔn)連續(xù)兆瓦級大功率激光陣列的高質(zhì)量量子阱材料也受到人們的重視。

          雖然常規(guī)量子阱結(jié)構(gòu)端面發(fā)射激光器是目前光電子領(lǐng)域占統(tǒng)治地位的有源器件,但由于其有源區(qū)極?。ā?.01μm)端面光電災(zāi)變損傷,大電流電熱燒毀和光束質(zhì)量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區(qū)量子級聯(lián)耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯(lián)激光器,輸出功率達(dá)5W以上;2000年初,法國湯姆遜公司又報(bào)道了單個(gè)激光器準(zhǔn)連續(xù)輸出功率超過10瓦好結(jié)果。最近,我國的科研工作者又提出并開展了多有源區(qū)縱向光耦合垂直腔面發(fā)射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質(zhì)量的新型激光器,在未來光通信、光互聯(lián)與光電信息處理方面有著良好的應(yīng)用前景。

          為克服PN結(jié)半導(dǎo)體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實(shí)驗(yàn)室發(fā)明了基于量子阱內(nèi)子帶躍遷和阱間共振隧穿的量子級聯(lián)激光器,突破了半導(dǎo)體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯(lián)激光器(QCLs)發(fā)明以來,Bell實(shí)驗(yàn)室等的科學(xué)家,在過去的7年多的時(shí)間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進(jìn)展。2001年瑞士Neuchatel大學(xué)的科學(xué)家采用雙聲子共振和三量子阱有源區(qū)結(jié)構(gòu)使波長為9.1μm的QCLs的工作溫度高達(dá)312K,連續(xù)輸出功率3mW.量子級聯(lián)激光器的工作波長已覆蓋近紅外到遠(yuǎn)紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調(diào)制器和無線光學(xué)連接等方面顯示出重要的應(yīng)用前景。中科院上海微系統(tǒng)和信息技術(shù)研究所于1999年研制成功120K5μm和250K8μm的量子級聯(lián)激光器;中科院半導(dǎo)體研究所于2000年又研制成功3.7μm室溫準(zhǔn)連續(xù)應(yīng)變補(bǔ)償量子級聯(lián)激光器,使我國成為能研制這類高質(zhì)量激光器材料為數(shù)不多的幾個(gè)國家之一。

          目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結(jié)構(gòu)材料發(fā)展的主流方向,正從直徑3英寸向4英寸過渡;生產(chǎn)型的MBE和M0CVD設(shè)備已研制成功并投入使用,每臺年生產(chǎn)能力可高達(dá)3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產(chǎn)型MBE和MOCVD設(shè)備的成熟與應(yīng)用,必然促進(jìn)襯底材料設(shè)備和材料評價(jià)技術(shù)的發(fā)展。

          (2)硅基應(yīng)變異質(zhì)結(jié)構(gòu)材料。

          硅基光、電器件集成一直是人們所追求的目標(biāo)。但由于硅是間接帶隙,如何提高硅基材料發(fā)光效率就成為一個(gè)亟待解決的問題。雖經(jīng)多年研究,但進(jìn)展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結(jié)構(gòu),Ge/Si量子點(diǎn)和量子點(diǎn)超晶格材料,Si/SiC量子點(diǎn)材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發(fā)光器件和有關(guān)納米硅的受激放大現(xiàn)象的報(bào)道,使人們看到了一線希望。

          另一方面,GeSi/Si應(yīng)變層超晶格材料,因其在新一代移動通信上的重要應(yīng)用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達(dá)200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。

          盡管GaAs/Si和InP/Si是實(shí)現(xiàn)光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數(shù)等不同造成的高密度失配位錯(cuò)而導(dǎo)致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協(xié)變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進(jìn)展。

          2.4一維量子線、零維量子點(diǎn)半導(dǎo)體微結(jié)構(gòu)材料

          基于量子尺寸效應(yīng)、量子干涉效應(yīng),量子隧穿效應(yīng)和庫侖阻效應(yīng)以及非線性光學(xué)效應(yīng)等的低維半導(dǎo)體材料是一種人工構(gòu)造(通過能帶工程實(shí)施)的新型半導(dǎo)體材料,是新一代微電子、光電子器件和電路的基礎(chǔ)。它的發(fā)展與應(yīng)用,極有可能觸發(fā)新的技術(shù)革命。

          目前低維半導(dǎo)體材料生長與制備主要集中在幾個(gè)比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進(jìn)展。俄羅斯約飛技術(shù)物理所MBE小組,柏林的俄德聯(lián)合研制小組和中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點(diǎn)激光器,工作波長lμm左右,單管室溫連續(xù)輸出功率高達(dá)3.6~4W.特別應(yīng)當(dāng)指出的是我國上述的MBE小組,2001年通過在高功率量子點(diǎn)激光器的有源區(qū)材料結(jié)構(gòu)中引入應(yīng)力緩解層,抑制了缺陷和位錯(cuò)的產(chǎn)生,提高了量子點(diǎn)激光器的工作壽命,室溫下連續(xù)輸出功率為1W時(shí)工作壽命超過5000小時(shí),這是大功率激光器的一個(gè)關(guān)鍵參數(shù),至今未見國外報(bào)道。

          在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進(jìn)展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報(bào)道了可在室溫工作的單電子開關(guān)器件,1998年Yauo等人采用0.25微米工藝技術(shù)實(shí)現(xiàn)了128Mb的單電子存貯器原型樣機(jī)的制造,這是在單電子器件在高密度存貯電路的應(yīng)用方面邁出的關(guān)鍵一步。目前,基于量子點(diǎn)的自適應(yīng)網(wǎng)絡(luò)計(jì)算機(jī),單光子源和應(yīng)用于量子計(jì)算的量子比特的構(gòu)建等方面的研究也正在進(jìn)行中。

          與半導(dǎo)體超晶格和量子點(diǎn)結(jié)構(gòu)的生長制備相比,高度有序的半導(dǎo)體量子線的制備技術(shù)難度較大。中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組,在繼利用MBE技術(shù)和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結(jié)構(gòu)的基礎(chǔ)上,對InAs/InAlAs量子線超晶格的空間自對準(zhǔn)(垂直或斜對準(zhǔn))的物理起因和生長控制進(jìn)行了研究,取得了較大進(jìn)展。

          王中林教授領(lǐng)導(dǎo)的喬治亞理工大學(xué)的材料科學(xué)與工程系和化學(xué)與生物化學(xué)系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發(fā)技術(shù),成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導(dǎo)體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現(xiàn)出高純、結(jié)構(gòu)均勻和單晶體,幾乎無缺陷和位錯(cuò);納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達(dá)數(shù)毫米。這種半導(dǎo)體氧化物納米帶是一個(gè)理想的材料體系,可以用來研究載流子維度受限的輸運(yùn)現(xiàn)象和基于它的功能器件制造。香港城市大學(xué)李述湯教授和瑞典隆德大學(xué)固體物理系納米中心的LarsSamuelson教授領(lǐng)導(dǎo)的小組,分別在SiO2/Si和InAs/InP半導(dǎo)體量子線超晶格結(jié)構(gòu)的生長制各方面也取得了重要進(jìn)展。

          低維半導(dǎo)體結(jié)構(gòu)制備的方法很多,主要有:微結(jié)構(gòu)材料生長和精細(xì)加工工藝相結(jié)合的方法,應(yīng)變自組裝量子線、量子點(diǎn)材料生長技術(shù),圖形化襯底和不同取向晶面選擇生長技術(shù),單原子操縱和加工技術(shù),納米結(jié)構(gòu)的輻照制備技術(shù),及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學(xué)方法制備量子點(diǎn)和量子線的技術(shù)等。目前發(fā)展的主要趨勢是尋找原子級無損傷加工方法和納米結(jié)構(gòu)的應(yīng)變自組裝可控生長技術(shù),以求獲得大小、形狀均勻、密度可控的無缺陷納米結(jié)構(gòu)。

          2.5寬帶隙半導(dǎo)體材料

          寬帶隙半導(dǎo)體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點(diǎn),成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點(diǎn)。目前,GaN基藍(lán)綠光發(fā)光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達(dá)140GHz,fT=67GHz,跨導(dǎo)為260ms/mm;HEMT器件也相繼問世,發(fā)展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業(yè)有限公司2000年宣稱,他們采用熱力學(xué)方法已研制成功2英寸GaN單晶材料,這將有力的推動藍(lán)光激光器和GaN基電子器件的發(fā)展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因?yàn)樗鼈冊陂L波長光通信用高T0光源和太陽能電池等方面顯示了重要應(yīng)用前景。

          以Cree公司為代表的體SiC單晶的研制已取得突破性進(jìn)展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍(lán)綠光LED業(yè)已上市,并參于與以藍(lán)寶石為襯低的GaN基發(fā)光器件的竟?fàn)帯F渌鸖iC相關(guān)高溫器件的研制也取得了長足的進(jìn)步。目前存在的主要問題是材料中的缺陷密度高,且價(jià)格昂貴。

          II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點(diǎn)而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的。經(jīng)過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時(shí),但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點(diǎn)缺陷密度和進(jìn)一步降低失配位錯(cuò)和解決歐姆接觸等問題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問題。

          寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對稱性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯(cuò)和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個(gè)迫切要解決的關(guān)鍵科學(xué)問題。這個(gè)問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應(yīng)用領(lǐng)域。

          目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實(shí)驗(yàn)室研制階段,不少影響這類材料發(fā)展的關(guān)鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實(shí)用化的關(guān)鍵問題,國內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。

          3光子晶體

          光子晶體是一種人工微結(jié)構(gòu)材料,介電常數(shù)周期的被調(diào)制在與工作波長相比擬的尺度,來自結(jié)構(gòu)單元的散射波的多重干涉形成一個(gè)光子帶隙,與半導(dǎo)體材料的電子能隙相似,并可用類似于固態(tài)晶體中的能帶論來描述三維周期介電結(jié)構(gòu)中光波的傳播,相應(yīng)光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態(tài)密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質(zhì)量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結(jié)合脈沖激光蒸發(fā)方法,即先用脈沖激光蒸發(fā)制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發(fā)光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個(gè)理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進(jìn)展,但三維光子晶體的研究,仍是一個(gè)具有挑戰(zhàn)性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進(jìn)展。

          4量子比特構(gòu)建與材料

          隨著微電子技術(shù)的發(fā)展,計(jì)算機(jī)芯片集成度不斷增高,器件尺寸越來越?。╪m尺度)并最終將受到器件工作原理和工藝技術(shù)限制,而無法滿足人類對更大信息量的需求。為此,發(fā)展基于全新原理和結(jié)構(gòu)的功能強(qiáng)大的計(jì)算機(jī)是21世紀(jì)人類面臨的巨大挑戰(zhàn)之一。1994年Shor基于量子態(tài)疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。

          所謂量子計(jì)算機(jī)是應(yīng)用量子力學(xué)原理進(jìn)行計(jì)的裝置,理論上講它比傳統(tǒng)計(jì)算機(jī)有更快的運(yùn)算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計(jì)算機(jī)理想極限。實(shí)現(xiàn)量子比特構(gòu)造和量子計(jì)算機(jī)的設(shè)想方案很多,其中最引人注目的是Kane最近提出的一個(gè)實(shí)現(xiàn)大規(guī)模量子計(jì)算的方案。其核心是利用硅納米電子器件中磷施主核自旋進(jìn)行信息編碼,通過外加電場控制核自旋間相互作用實(shí)現(xiàn)其邏輯運(yùn)算,自旋測量是由自旋極化電子電流來完成,計(jì)算機(jī)要工作在mK的低溫下。

          這種量子計(jì)算機(jī)的最終實(shí)現(xiàn)依賴于與硅平面工藝兼容的硅納米電子技術(shù)的發(fā)展。除此之外,為了避免雜質(zhì)對磷核自旋的干擾,必需使用高純(無雜質(zhì))和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規(guī)則的磷原子陣列等是實(shí)現(xiàn)量子計(jì)算的關(guān)鍵。量子態(tài)在傳輸,處理和存儲過程中可能因環(huán)境的耦合(干擾),而從量子疊加態(tài)演化成經(jīng)典的混合態(tài),即所謂失去相干,特別是在大規(guī)模計(jì)算中能否始終保持量子態(tài)間的相干是量子計(jì)算機(jī)走向?qū)嵱没八匦杩朔碾y題。

          5發(fā)展我國半導(dǎo)體材料的幾點(diǎn)建議

          鑒于我國目前的工業(yè)基礎(chǔ),國力和半導(dǎo)體材料的發(fā)展水平,提出以下發(fā)展建議供參考。

          5.1硅單晶和外延材料硅材料作為微電子技術(shù)的主導(dǎo)地位

          至少到本世紀(jì)中葉都不會改變,至今國內(nèi)各大集成電路制造廠家所需的硅片基本上是依賴進(jìn)口。目前國內(nèi)雖已可拉制8英寸的硅單晶和小批量生產(chǎn)6英寸的硅外延片,然而都未形成穩(wěn)定的批量生產(chǎn)能力,更談不上規(guī)模生產(chǎn)。建議國家集中人力和財(cái)力,首先開展8英寸硅單晶實(shí)用化和6英寸硅外延片研究開發(fā),在“十五”的后期,爭取做到8英寸集成電路生產(chǎn)線用硅單晶材料的國產(chǎn)化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應(yīng)有8~12英寸硅單晶、片材和8英寸硅外延片的規(guī)模生產(chǎn)能力;更大直徑的硅單晶、片材和外延片也應(yīng)及時(shí)布點(diǎn)研制。另外,硅多晶材料生產(chǎn)基地及其相配套的高純石英、氣體和化學(xué)試劑等也必需同時(shí)給以重視,只有這樣,才能逐步改觀我國微電子技術(shù)的落后局面,進(jìn)入世界發(fā)達(dá)國家之林。

          5.2GaAs及其有關(guān)化合物半導(dǎo)體單晶材料發(fā)展建議

          GaAs、InP等單晶材料同國外的差距主要表現(xiàn)在拉晶和晶片加工設(shè)備落后,沒有形成生產(chǎn)能力。相信在國家各部委的統(tǒng)一組織、領(lǐng)導(dǎo)下,并爭取企業(yè)介入,建立我國自己的研究、開發(fā)和生產(chǎn)聯(lián)合體,取各家之長,分工協(xié)作,到2010年趕上世界先進(jìn)水平是可能的。要達(dá)到上述目的,到“十五”末應(yīng)形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產(chǎn)能力,以滿足我國不斷發(fā)展的微電子和光電子工業(yè)的需術(shù)。到2010年,應(yīng)當(dāng)實(shí)現(xiàn)4英寸GaAs生產(chǎn)線的國產(chǎn)化,并具有滿足6英寸線的供片能力。

          5.3發(fā)展超晶格、量子阱和一維、零維半導(dǎo)體微結(jié)構(gòu)材料的建議

          (1)超晶格、量子阱材料從目前我國國力和我們已有的基礎(chǔ)出發(fā),應(yīng)以三基色(超高亮度紅、綠和藍(lán)光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強(qiáng)MBE和MOCVD兩個(gè)基地的建設(shè),引進(jìn)必要的適合批量生產(chǎn)的工業(yè)型MBE和MOCVD設(shè)備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍(lán)綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實(shí)用化研究是當(dāng)務(wù)之急,爭取在“十五”末,能滿足國內(nèi)2、3和4英寸GaAs生產(chǎn)線所需要的異質(zhì)結(jié)材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結(jié)構(gòu)材料的生產(chǎn)能力。達(dá)到本世紀(jì)初的國際水平。

          寬帶隙高溫半導(dǎo)體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應(yīng)擇優(yōu)布點(diǎn),分別做好研究與開發(fā)工作。

          篇10

          中圖分類號TU7 文獻(xiàn)標(biāo)識碼A 文章編號 1674-6708(2014)113-0126-02

          0引言

          目前科學(xué)技術(shù)日益進(jìn)步,人民的生活水平不斷的提高。人們對家具生活得舒適程度也要求越來越高。現(xiàn)在國內(nèi)外一些發(fā)展快速的城市的住宅用的燈具、景觀燈已經(jīng)大馬路上面用的照明路燈已經(jīng)大部分都開始采用新型的LED節(jié)能燈了。但是由于LED燈的制作成本較高,導(dǎo)致LED在市場占領(lǐng)方面略顯遲緩。目前國內(nèi)外著名學(xué)者和一些研究機(jī)構(gòu)以及一些大型的企業(yè)正在夜以繼日的不斷探索,希望可以研究出一些新型的LED材料,減小LED制作的成本,使得LED燈的普及率更加高些。

          1 LED燈的發(fā)光原理和LED的光學(xué)參數(shù)

          1.1 LED燈的發(fā)光原理

          Light emitting diode的英文縮寫就是LED。LED的基礎(chǔ)結(jié)構(gòu)是在一小片的發(fā)光半導(dǎo)體材料上面,放置一個(gè)電極的引線架子,接著在架子的周圍用環(huán)氧樹脂固定并密封。這樣子可以起到保護(hù)電機(jī)芯線和半導(dǎo)體的作用,這樣子制作出來的LED抗震性非常好,且具有一定的防水作用。

          LED發(fā)光二極管的主要部分是有由兩片N型的半導(dǎo)體和P型半導(dǎo)體背對背制作而成的芯片。因?yàn)镻型半導(dǎo)體材料和P型半導(dǎo)體材料上面都帶了載流子,這兩種不同的半導(dǎo)體的交界面之間會形成一個(gè)空間電荷存儲區(qū)間。也就是我們常說的PN結(jié)。在給半導(dǎo)體材料的正負(fù)極之間加上電壓的情況下,PN結(jié)之間就會形成電場,PN結(jié)中的空子和電子就會在電子的作用下發(fā)生運(yùn)動,并結(jié)合在一起。在空子和電子的結(jié)合過程中,會產(chǎn)生多余的能量,則這些能量會以發(fā)光的方式釋放出來。最終實(shí)現(xiàn)電能向光能的轉(zhuǎn)換。LED的發(fā)光原理圖圖1所示。給LED加上正向電壓,也就在半導(dǎo)體的P極接上正極,在半導(dǎo)體的N極接上負(fù)極。在LED的兩極之間就會形成電流,電流從正極流向負(fù)極,這樣子在空穴跟電子的結(jié)合過程之間就會發(fā)出不同顏色的光。LED間通的電流大小決定了Led的發(fā)光亮度。而LED的發(fā)光顏色主要是由半導(dǎo)體材料里面參雜的熒光粉的材料來控制的。

          1.2 LED的光學(xué)參數(shù)

          為了鑒別一個(gè)LED的好壞,經(jīng)常會有一些參數(shù)來描述LED。常用的LED的光學(xué)參數(shù)有光通量、發(fā)光強(qiáng)度、亮度、色溫、顯色性以及光效等參數(shù)。

          光通量是指在正常情況下人眼可以感覺到的光的輻射功率。它等于在單位時(shí)間里面一束光的輻射的能量與該束光所對應(yīng)的相對視率的成績。由于人眼對不同的光的靈敏度不一樣,所以當(dāng)光的輻射功率相等的時(shí)候,并不能代表光通量也是相同的。發(fā)光強(qiáng)度又叫光強(qiáng),它是指發(fā)光體在一個(gè)固定的立體單元里面?zhèn)鬏數(shù)墓馔颗c該立體單元的面積的商,這個(gè)商就代表了單位體積的光通量。亮度是指光源在給定的一個(gè)方向里面單位體積上面的光束的發(fā)光強(qiáng)度。而光效而是指光源的發(fā)光效率。也就是光源的總光通量與該發(fā)光體所消耗的能量的商。發(fā)光體的發(fā)光效率越高,代表了該照明設(shè)備將電能轉(zhuǎn)化成光能的能力越強(qiáng)。也代表了在同能的能量的情況下,該設(shè)備的照明性能越強(qiáng),也就是該設(shè)備所能達(dá)到的亮度越大。顯色性是指光源對物體顏色的分辨程度。也就是對顏色的逼真效果。發(fā)光設(shè)備的顯色性能越高,則該設(shè)備對顏色的在線能力越強(qiáng),而我們看到的顏色也就越接近于其本來的顏色。而顯色性能較差的設(shè)備,則對顏色的能力在線能力越差,我們所看到顏色也與越來的顏色相差越大。

          盡管LED燈功率小,占用空間小,易于調(diào)色,顏色可操作性強(qiáng)。但是LED光源也存在一些缺陷。主要缺陷表現(xiàn)在以下幾個(gè)方面:LED發(fā)光功率小、LED的成本價(jià)格太高、制作工藝要求高。

          2 LED芯片的測試

          由于LED技術(shù)發(fā)展迅速,LED市場也發(fā)展快速。目前不少企業(yè)正逐漸把大量的資金都投入到LED行業(yè)當(dāng)中,并成立的相應(yīng)的企業(yè)。然而當(dāng)中卻存在一些唯利是圖的商人,他們利用人們對LED技術(shù)的缺乏的弱點(diǎn),都宣稱自己企業(yè)的生產(chǎn)的LED燈的壽命可以達(dá)到60000小時(shí)以上,有的商家甚至說明自己的產(chǎn)品可以達(dá)到110000小時(shí)以上。為此如何才能正確的區(qū)分出那些產(chǎn)品是合格產(chǎn)品,那些產(chǎn)品的質(zhì)量真的就像商人所描述的那樣子,現(xiàn)在已經(jīng)逐漸成為一個(gè)困擾使用者的巨大問題。為此,本文提供一個(gè)簡單的測試辦法:測試方案的電路圖如下圖2.首先,我們采用積分球來記錄相應(yīng)LED二極管在正向?qū)ǖ那闆r下的導(dǎo)通壓降。接著根據(jù)這個(gè)導(dǎo)通壓降和電路的電流,確定和相對應(yīng)二極管電路回路電阻值的大小。以確保二極管不被燒壞。接著在測試之前,對二極管進(jìn)行校準(zhǔn),確保二極管壽命測試的準(zhǔn)確性。然后測量每個(gè)二極管在不同的工作電流下的發(fā)光量是多大以及正向?qū)▔航凳嵌啻螅⑼ㄟ^光譜分析儀器來確定每個(gè)二極管的最初光譜是什么。為了保證測量的精度,對每個(gè)二極管都測試5次以上,并取平均值。最后記錄該數(shù)據(jù)。最后在每個(gè)月的固定時(shí)間段對每一顆的LED都進(jìn)行測試,測試其的光通量,并給LED同上三種不同的電流,并記錄此時(shí)的LED的光通量,根據(jù)不同電流下的LED的光通量值繪制出相應(yīng)二極管的光通量變化曲線。根據(jù)繪制的二極管的光通量變化曲線就可以大致的計(jì)算出二極管的實(shí)際工作時(shí)間。通過二極管的頻譜分析儀可以知道二極管的色度漂移情況。

          3 LED芯片及LED燈具的光學(xué)模擬

          傳統(tǒng)的LED燈的照明設(shè)計(jì)都是通過大量實(shí)驗(yàn)得到的,盡管所測得的結(jié)果比較準(zhǔn)確,但是這個(gè)測試結(jié)果只有在燈具的外觀已經(jīng)制作完成以后才可以進(jìn)行大量實(shí)驗(yàn)。要是測試的結(jié)果不能和原先設(shè)計(jì)的一樣,就需要重新設(shè)計(jì)LED的外觀,浪費(fèi)大量的人力和財(cái)力。本文以Tacacepro光學(xué)模擬軟件為核心,對LED燈具的外觀不斷修改,對LED燈的數(shù)量和陣列方式不斷的改進(jìn),通過模擬的方式,并進(jìn)行了大量的仿真,終于得出了LED燈排列方式對LED燈總體發(fā)光效率以及空間照明的影響規(guī)律。并最終設(shè)計(jì)出了一種發(fā)光效率高,節(jié)約能源的LED燈具。LED的模擬過程如下;首先運(yùn)用Tacacepro對LED燈具進(jìn)行建模,所建的模型如圖3。并通過軟件設(shè)置LED芯片的光源屬性等參數(shù)。接著定義LED燈具的各種材料特性。并定義光源的波長以及光源的閥值等不同的參數(shù)。最后運(yùn)用軟件對LED的光學(xué)設(shè)計(jì)模型模擬。

          參考文獻(xiàn)

          [1]嚴(yán)萍,李劍清.照明用LED光學(xué)系統(tǒng)的計(jì)算機(jī)輔助設(shè)計(jì).半導(dǎo)體光電,2004,25(3):181-183.

          篇11

          1半導(dǎo)體材料的戰(zhàn)略地位

          上世紀(jì)中葉,單晶硅和半導(dǎo)體晶體管的發(fā)明及其硅集成電路的研制成功,導(dǎo)致了電子工業(yè)革命;上世紀(jì)70年代初石英光導(dǎo)纖維材料和GaAs激光器的發(fā)明,促進(jìn)了光纖通信技術(shù)迅速發(fā)展并逐步形成了高新技術(shù)產(chǎn)業(yè),使人類進(jìn)入了信息時(shí)代。超晶格概念的提出及其半導(dǎo)體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設(shè)計(jì)思想,使半導(dǎo)體器件的設(shè)計(jì)與制造從“雜質(zhì)工程”發(fā)展到“能帶工程”。納米科學(xué)技術(shù)的發(fā)展和應(yīng)用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強(qiáng)大的新型器件與電路,必將深刻地影響著世界的政治、經(jīng)濟(jì)格局和軍事對抗的形式,徹底改變?nèi)藗兊纳罘绞健?/p>

          2幾種主要半導(dǎo)體材料的發(fā)展現(xiàn)狀與趨勢

          2.1硅材料

          從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發(fā)展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實(shí)現(xiàn)大規(guī)模工業(yè)生產(chǎn),基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術(shù)正處在由實(shí)驗(yàn)室向工業(yè)生產(chǎn)轉(zhuǎn)變中。目前300mm,0.18μm工藝的硅ULSI生產(chǎn)線已經(jīng)投入生產(chǎn),300mm,0.13μm工藝生產(chǎn)線也將在2003年完成評估。18英寸重達(dá)414公斤的硅單晶和18英寸的硅園片已在實(shí)驗(yàn)室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。

          從進(jìn)一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發(fā)展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發(fā)展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發(fā)中。

          理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應(yīng)對現(xiàn)有器件特性影響所帶來的物理限制和光刻技術(shù)的限制問題,更重要的是將受硅、SiO2自身性質(zhì)的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統(tǒng)集成芯片技術(shù)等來提高ULSI的集成度、運(yùn)算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計(jì)算和DNA生物計(jì)算等之外,還把目光放在以GaAs、InP為基的化合物半導(dǎo)體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點(diǎn)材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導(dǎo)體材料研發(fā)的重點(diǎn)。

          2.2GaAs和InP單晶材料

          GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點(diǎn);在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨(dú)特的優(yōu)勢。

          目前,世界GaAs單晶的總年產(chǎn)量已超過200噸,其中以低位錯(cuò)密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導(dǎo)電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發(fā)展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產(chǎn)線。InP具有比GaAs更優(yōu)越的高頻性能,發(fā)展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關(guān)鍵技術(shù)尚未完全突破,價(jià)格居高不下。

          GaAs和InP單晶的發(fā)展趨勢是:

          (1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產(chǎn),預(yù)計(jì)本世紀(jì)初的頭幾年直徑為6英寸的SI-GaAs也將投入工業(yè)應(yīng)用。

          (2)。提高材料的電學(xué)和光學(xué)微區(qū)均勻性。

          (3)。降低單晶的缺陷密度,特別是位錯(cuò)。

          (4)。GaAs和InP單晶的VGF生長技術(shù)發(fā)展很快,很有可能成為主流技術(shù)。

          2.3半導(dǎo)體超晶格、量子阱材料

          半導(dǎo)體超薄層微結(jié)構(gòu)材料是基于先進(jìn)生長技術(shù)(MBE,MOCVD)的新一代人工構(gòu)造材料。它以全新的概念改變著光電子和微電子器件的設(shè)計(jì)思想,出現(xiàn)了“電學(xué)和光學(xué)特性可剪裁”為特征的新范疇,是新一代固態(tài)量子器件的基礎(chǔ)材料。

          (1)Ⅲ-V族超晶格、量子阱材料。

          GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應(yīng)變補(bǔ)償材料體系已發(fā)展得相當(dāng)成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達(dá)fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質(zhì)結(jié)雙極晶體管(HBT)的最高頻率fmax也已高達(dá)500GHz,HEMT邏輯電路研制也發(fā)展很快?;谏鲜霾牧象w系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發(fā)光二極管和紅光激光器以及大功率半導(dǎo)體量子阱激光器已商品化;表面光發(fā)射器件和光雙穩(wěn)器件等也已達(dá)到或接近達(dá)到實(shí)用化水平。目前,研制高質(zhì)量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調(diào)制器單片集成InP基多量子阱材料和超高速驅(qū)動電路所需的低維結(jié)構(gòu)材料是解決光纖通信瓶頸問題的關(guān)鍵,在實(shí)驗(yàn)室西門子公司已完成了80×40Gbps傳輸40km的實(shí)驗(yàn)。另外,用于制造準(zhǔn)連續(xù)兆瓦級大功率激光陣列的高質(zhì)量量子阱材料也受到人們的重視。

          雖然常規(guī)量子阱結(jié)構(gòu)端面發(fā)射激光器是目前光電子領(lǐng)域占統(tǒng)治地位的有源器件,但由于其有源區(qū)極?。ā?.01μm)端面光電災(zāi)變損傷,大電流電熱燒毀和光束質(zhì)量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區(qū)量子級聯(lián)耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯(lián)激光器,輸出功率達(dá)5W以上;2000年初,法國湯姆遜公司又報(bào)道了單個(gè)激光器準(zhǔn)連續(xù)輸出功率超過10瓦好結(jié)果。最近,我國的科研工作者又提出并開展了多有源區(qū)縱向光耦合垂直腔面發(fā)射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質(zhì)量的新型激光器,在未來光通信、光互聯(lián)與光電信息處理方面有著良好的應(yīng)用前景。

          為克服PN結(jié)半導(dǎo)體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實(shí)驗(yàn)室發(fā)明了基于量子阱內(nèi)子帶躍遷和阱間共振隧穿的量子級聯(lián)激光器,突破了半導(dǎo)體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯(lián)激光器(QCLs)發(fā)明以來,Bell實(shí)驗(yàn)室等的科學(xué)家,在過去的7年多的時(shí)間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進(jìn)展。2001年瑞士Neuchatel大學(xué)的科學(xué)家采用雙聲子共振和三量子阱有源區(qū)結(jié)構(gòu)使波長為9.1μm的QCLs的工作溫度高達(dá)312K,連續(xù)輸出功率3mW.量子級聯(lián)激光器的工作波長已覆蓋近紅外到遠(yuǎn)紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調(diào)制器和無線光學(xué)連接等方面顯示出重要的應(yīng)用前景。中科院上海微系統(tǒng)和信息技術(shù)研究所于1999年研制成功120K5μm和250K8μm的量子級聯(lián)激光器;中科院半導(dǎo)體研究所于2000年又研制成功3.7μm室溫準(zhǔn)連續(xù)應(yīng)變補(bǔ)償量子級聯(lián)激光器,使我國成為能研制這類高質(zhì)量激光器材料為數(shù)不多的幾個(gè)國家之一。

          目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結(jié)構(gòu)材料發(fā)展的主流方向,正從直徑3英寸向4英寸過渡;生產(chǎn)型的MBE和M0CVD設(shè)備已研制成功并投入使用,每臺年生產(chǎn)能力可高達(dá)3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產(chǎn)型MBE和MOCVD設(shè)備的成熟與應(yīng)用,必然促進(jìn)襯底材料設(shè)備和材料評價(jià)技術(shù)的發(fā)展。

          (2)硅基應(yīng)變異質(zhì)結(jié)構(gòu)材料。

          硅基光、電器件集成一直是人們所追求的目標(biāo)。但由于硅是間接帶隙,如何提高硅基材料發(fā)光效率就成為一個(gè)亟待解決的問題。雖經(jīng)多年研究,但進(jìn)展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結(jié)構(gòu),Ge/Si量子點(diǎn)和量子點(diǎn)超晶格材料,Si/SiC量子點(diǎn)材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發(fā)光器件和有關(guān)納米硅的受激放大現(xiàn)象的報(bào)道,使人們看到了一線希望。

          另一方面,GeSi/Si應(yīng)變層超晶格材料,因其在新一代移動通信上的重要應(yīng)用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達(dá)200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。

          盡管GaAs/Si和InP/Si是實(shí)現(xiàn)光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數(shù)等不同造成的高密度失配位錯(cuò)而導(dǎo)致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協(xié)變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進(jìn)展。

          2.4一維量子線、零維量子點(diǎn)半導(dǎo)體微結(jié)構(gòu)材料

          基于量子尺寸效應(yīng)、量子干涉效應(yīng),量子隧穿效應(yīng)和庫侖阻效應(yīng)以及非線性光學(xué)效應(yīng)等的低維半導(dǎo)體材料是一種人工構(gòu)造(通過能帶工程實(shí)施)的新型半導(dǎo)體材料,是新一代微電子、光電子器件和電路的基礎(chǔ)。它的發(fā)展與應(yīng)用,極有可能觸發(fā)新的技術(shù)革命。

          目前低維半導(dǎo)體材料生長與制備主要集中在幾個(gè)比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進(jìn)展。俄羅斯約飛技術(shù)物理所MBE小組,柏林的俄德聯(lián)合研制小組和中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點(diǎn)激光器,工作波長lμm左右,單管室溫連續(xù)輸出功率高達(dá)3.6~4W.特別應(yīng)當(dāng)指出的是我國上述的MBE小組,2001年通過在高功率量子點(diǎn)激光器的有源區(qū)材料結(jié)構(gòu)中引入應(yīng)力緩解層,抑制了缺陷和位錯(cuò)的產(chǎn)生,提高了量子點(diǎn)激光器的工作壽命,室溫下連續(xù)輸出功率為1W時(shí)工作壽命超過5000小時(shí),這是大功率激光器的一個(gè)關(guān)鍵參數(shù),至今未見國外報(bào)道。

          在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進(jìn)展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報(bào)道了可在室溫工作的單電子開關(guān)器件,1998年Yauo等人采用0.25微米工藝技術(shù)實(shí)現(xiàn)了128Mb的單電子存貯器原型樣機(jī)的制造,這是在單電子器件在高密度存貯電路的應(yīng)用方面邁出的關(guān)鍵一步。目前,基于量子點(diǎn)的自適應(yīng)網(wǎng)絡(luò)計(jì)算機(jī),單光子源和應(yīng)用于量子計(jì)算的量子比特的構(gòu)建等方面的研究也正在進(jìn)行中。

          與半導(dǎo)體超晶格和量子點(diǎn)結(jié)構(gòu)的生長制備相比,高度有序的半導(dǎo)體量子線的制備技術(shù)難度較大。中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組,在繼利用MBE技術(shù)和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結(jié)構(gòu)的基礎(chǔ)上,對InAs/InAlAs量子線超晶格的空間自對準(zhǔn)(垂直或斜對準(zhǔn))的物理起因和生長控制進(jìn)行了研究,取得了較大進(jìn)展。

          王中林教授領(lǐng)導(dǎo)的喬治亞理工大學(xué)的材料科學(xué)與工程系和化學(xué)與生物化學(xué)系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發(fā)技術(shù),成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導(dǎo)體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現(xiàn)出高純、結(jié)構(gòu)均勻和單晶體,幾乎無缺陷和位錯(cuò);納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達(dá)數(shù)毫米。這種半導(dǎo)體氧化物納米帶是一個(gè)理想的材料體系,可以用來研究載流子維度受限的輸運(yùn)現(xiàn)象和基于它的功能器件制造。香港城市大學(xué)李述湯教授和瑞典隆德大學(xué)固體物理系納米中心的LarsSamuelson教授領(lǐng)導(dǎo)的小組,分別在SiO2/Si和InAs/InP半導(dǎo)體量子線超晶格結(jié)構(gòu)的生長制各方面也取得了重要進(jìn)展。

          低維半導(dǎo)體結(jié)構(gòu)制備的方法很多,主要有:微結(jié)構(gòu)材料生長和精細(xì)加工工藝相結(jié)合的方法,應(yīng)變自組裝量子線、量子點(diǎn)材料生長技術(shù),圖形化襯底和不同取向晶面選擇生長技術(shù),單原子操縱和加工技術(shù),納米結(jié)構(gòu)的輻照制備技術(shù),及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學(xué)方法制備量子點(diǎn)和量子線的技術(shù)等。目前發(fā)展的主要趨勢是尋找原子級無損傷加工方法和納米結(jié)構(gòu)的應(yīng)變自組裝可控生長技術(shù),以求獲得大小、形狀均勻、密度可控的無缺陷納米結(jié)構(gòu)。

          2.5寬帶隙半導(dǎo)體材料

          寬帶隙半導(dǎo)體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點(diǎn),成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點(diǎn)。目前,GaN基藍(lán)綠光發(fā)光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達(dá)140GHz,fT=67GHz,跨導(dǎo)為260ms/mm;HEMT器件也相繼問世,發(fā)展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業(yè)有限公司2000年宣稱,他們采用熱力學(xué)方法已研制成功2英寸GaN單晶材料,這將有力的推動藍(lán)光激光器和GaN基電子器件的發(fā)展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因?yàn)樗鼈冊陂L波長光通信用高T0光源和太陽能電池等方面顯示了重要應(yīng)用前景。

          以Cree公司為代表的體SiC單晶的研制已取得突破性進(jìn)展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍(lán)綠光LED業(yè)已上市,并參于與以藍(lán)寶石為襯低的GaN基發(fā)光器件的竟?fàn)?。其他SiC相關(guān)高溫器件的研制也取得了長足的進(jìn)步。目前存在的主要問題是材料中的缺陷密度高,且價(jià)格昂貴。

          II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點(diǎn)而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的。經(jīng)過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時(shí),但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點(diǎn)缺陷密度和進(jìn)一步降低失配位錯(cuò)和解決歐姆接觸等問題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問題。

          寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對稱性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯(cuò)和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個(gè)迫切要解決的關(guān)鍵科學(xué)問題。這個(gè)問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應(yīng)用領(lǐng)域。

          目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實(shí)驗(yàn)室研制階段,不少影響這類材料發(fā)展的關(guān)鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實(shí)用化的關(guān)鍵問題,國內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。

          3光子晶體

          光子晶體是一種人工微結(jié)構(gòu)材料,介電常數(shù)周期的被調(diào)制在與工作波長相比擬的尺度,來自結(jié)構(gòu)單元的散射波的多重干涉形成一個(gè)光子帶隙,與半導(dǎo)體材料的電子能隙相似,并可用類似于固態(tài)晶體中的能帶論來描述三維周期介電結(jié)構(gòu)中光波的傳播,相應(yīng)光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態(tài)密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質(zhì)量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結(jié)合脈沖激光蒸發(fā)方法,即先用脈沖激光蒸發(fā)制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發(fā)光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個(gè)理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進(jìn)展,但三維光子晶體的研究,仍是一個(gè)具有挑戰(zhàn)性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進(jìn)展。

          4量子比特構(gòu)建與材料

          隨著微電子技術(shù)的發(fā)展,計(jì)算機(jī)芯片集成度不斷增高,器件尺寸越來越?。╪m尺度)并最終將受到器件工作原理和工藝技術(shù)限制,而無法滿足人類對更大信息量的需求。為此,發(fā)展基于全新原理和結(jié)構(gòu)的功能強(qiáng)大的計(jì)算機(jī)是21世紀(jì)人類面臨的巨大挑戰(zhàn)之一。1994年Shor基于量子態(tài)疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。

          所謂量子計(jì)算機(jī)是應(yīng)用量子力學(xué)原理進(jìn)行計(jì)的裝置,理論上講它比傳統(tǒng)計(jì)算機(jī)有更快的運(yùn)算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計(jì)算機(jī)理想極限。實(shí)現(xiàn)量子比特構(gòu)造和量子計(jì)算機(jī)的設(shè)想方案很多,其中最引人注目的是Kane最近提出的一個(gè)實(shí)現(xiàn)大規(guī)模量子計(jì)算的方案。其核心是利用硅納米電子器件中磷施主核自旋進(jìn)行信息編碼,通過外加電場控制核自旋間相互作用實(shí)現(xiàn)其邏輯運(yùn)算,自旋測量是由自旋極化電子電流來完成,計(jì)算機(jī)要工作在mK的低溫下。

          這種量子計(jì)算機(jī)的最終實(shí)現(xiàn)依賴于與硅平面工藝兼容的硅納米電子技術(shù)的發(fā)展。除此之外,為了避免雜質(zhì)對磷核自旋的干擾,必需使用高純(無雜質(zhì))和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規(guī)則的磷原子陣列等是實(shí)現(xiàn)量子計(jì)算的關(guān)鍵。量子態(tài)在傳輸,處理和存儲過程中可能因環(huán)境的耦合(干擾),而從量子疊加態(tài)演化成經(jīng)典的混合態(tài),即所謂失去相干,特別是在大規(guī)模計(jì)算中能否始終保持量子態(tài)間的相干是量子計(jì)算機(jī)走向?qū)嵱没八匦杩朔碾y題。

          5發(fā)展我國半導(dǎo)體材料的幾點(diǎn)建議

          鑒于我國目前的工業(yè)基礎(chǔ),國力和半導(dǎo)體材料的發(fā)展水平,提出以下發(fā)展建議供參考。

          5.1硅單晶和外延材料硅材料作為微電子技術(shù)的主導(dǎo)地位

          至少到本世紀(jì)中葉都不會改變,至今國內(nèi)各大集成電路制造廠家所需的硅片基本上是依賴進(jìn)口。目前國內(nèi)雖已可拉制8英寸的硅單晶和小批量生產(chǎn)6英寸的硅外延片,然而都未形成穩(wěn)定的批量生產(chǎn)能力,更談不上規(guī)模生產(chǎn)。建議國家集中人力和財(cái)力,首先開展8英寸硅單晶實(shí)用化和6英寸硅外延片研究開發(fā),在“十五”的后期,爭取做到8英寸集成電路生產(chǎn)線用硅單晶材料的國產(chǎn)化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應(yīng)有8~12英寸硅單晶、片材和8英寸硅外延片的規(guī)模生產(chǎn)能力;更大直徑的硅單晶、片材和外延片也應(yīng)及時(shí)布點(diǎn)研制。另外,硅多晶材料生產(chǎn)基地及其相配套的高純石英、氣體和化學(xué)試劑等也必需同時(shí)給以重視,只有這樣,才能逐步改觀我國微電子技術(shù)的落后局面,進(jìn)入世界發(fā)達(dá)國家之林。

          5.2GaAs及其有關(guān)化合物半導(dǎo)體單晶材料發(fā)展建議

          GaAs、InP等單晶材料同國外的差距主要表現(xiàn)在拉晶和晶片加工設(shè)備落后,沒有形成生產(chǎn)能力。相信在國家各部委的統(tǒng)一組織、領(lǐng)導(dǎo)下,并爭取企業(yè)介入,建立我國自己的研究、開發(fā)和生產(chǎn)聯(lián)合體,取各家之長,分工協(xié)作,到2010年趕上世界先進(jìn)水平是可能的。要達(dá)到上述目的,到“十五”末應(yīng)形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產(chǎn)能力,以滿足我國不斷發(fā)展的微電子和光電子工業(yè)的需術(shù)。到2010年,應(yīng)當(dāng)實(shí)現(xiàn)4英寸GaAs生產(chǎn)線的國產(chǎn)化,并具有滿足6英寸線的供片能力。

          5.3發(fā)展超晶格、量子阱和一維、零維半導(dǎo)體微結(jié)構(gòu)材料的建議